Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-spatial, motor-specific activation in posterior parietal cortex

Abstract

A localized cluster of neurons in macaque posterior parietal cortex, termed the parietal reach region (PRR), is activated when a reach is planned to a visible or remembered target. To explore the role of PRR in sensorimotor transformations, we tested whether cells would be activated when a reach is planned to an as-yet unspecified goal. Over one-third of PRR cells increased their firing after an instruction to prepare a reach, but not after an instruction to prepare a saccade, when the target of the movement remained unknown. A partially overlapping population (two-thirds of cells) was activated when the monkey was informed of the target location but not the type of movement to be made. Thus a subset of PRR neurons separately code spatial and effector-specific information, consistent with a role in specifying potential motor responses to particular targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of the parietal reach region.
Figure 2: Neuronal activity in PRR can be evoked by the intention to make an arm movement even without a spatial target, or by spatial information without effector information.
Figure 3: Intention cells in the IPS.
Figure 4: Effector-specific activity in PRR is not driven by a prediction of upcoming target location.
Figure 5: Effector-specific activity in PRR is not driven by proprioceptive feedback from the arm or eyes.
Figure 6: Effector-specific activity in PRR is not driven by color-selective sensory responses.

Similar content being viewed by others

References

  1. Hyvarinen, J. & Poranen, A. Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97, 673–692 (1974).

    Article  CAS  Google Scholar 

  2. Mountcastle, V.B., Lynch, J.G., Georgopoulos, A., Sakata, H. & Acuna, C. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908 (1974).

    Article  Google Scholar 

  3. Robinson, D.L., Goldberg, M.E. & Stanton, G.B. Parietal association cortex in the primate: sensory mechanisms and behavioral modulation. J. Neurophysiol. 41, 910–932 (1978).

    Article  CAS  Google Scholar 

  4. Bushnell, M.C., Goldberg, M.E. & Robinson, D.L. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol. 46, 755–772 (1981).

    Article  CAS  Google Scholar 

  5. Kusunoki, M., Gottlieb, J. & Goldberg, M.E. The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vision Res. 40, 1459–1468 (2000).

    Article  CAS  Google Scholar 

  6. Colby, C.L., Duhamel, J.R. & Goldberg, M.E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    Article  CAS  Google Scholar 

  7. Gottlieb, J.P., Kusunoki, M. & Goldberg, M.E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).

    Article  CAS  Google Scholar 

  8. Mazzoni, P., Bracewell, R.M., Barash, S. & Andersen, R.A. Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. J. Neurophysiol. 75, 1233–1241 (1996).

    Article  CAS  Google Scholar 

  9. Linden, J.F., Grunewald, A. & Andersen, R.A. Responses to auditory stimuli in macaque lateral intraparietal area. II. Behavioral modulation. J. Neurophysiol. 82, 343–58 (1999).

    Article  CAS  Google Scholar 

  10. Platt, M.L. & Glimcher, P.W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    Article  CAS  Google Scholar 

  11. Mazzoni, P., Bracewell, M., Barash, S. & Andersen, R.A. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory. J. Neurophysiol. 76, 1439–1456 (1996).

    Article  CAS  Google Scholar 

  12. Snyder, L.H., Batista, A.P. & Andersen, R.A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  CAS  Google Scholar 

  13. Colby, C.L. Action-oriented spatial reference frames in cortex. Neuron 20, 15–24 (1998).

    Article  CAS  Google Scholar 

  14. Platt, M.L. & Glimcher, P.W. Responses of intraparietal neurons to saccadic targets and visual distractors. J. Neurophysiol. 78, 1574–1589 (1997).

    Article  CAS  Google Scholar 

  15. Snyder, L.S., Batista, A.P. & Andersen, R.A. Intention-related activity in the posterior parietal cortex: a review. Vision Res. 40, 1433–1441 (2000).

    Article  CAS  Google Scholar 

  16. Ungerleider, L. & Mishkin, M. in Analysis of Visual Behavior (eds. Ingle, D. J. Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  17. Goodale, M.A. & Milner, A.D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  CAS  Google Scholar 

  18. Hoshi, E. & Tanji, J. Integration of target and body-part information in the premotor cortex when planning action. Nature 408, 466–470 (2000).

    Article  CAS  Google Scholar 

  19. Kurata, K. Corticocortical inputs to the dorsal and ventral aspects of the premotor cortex of macaque monkeys. Neurosci. Res. 12, 263–280 (1991).

    Article  CAS  Google Scholar 

  20. Tanne, J., Boussaoud, D., Boyer-Zeller, N. & Rouiller, E.M. Direct visual pathways for reaching movements in the macaque monkey. Neuroreport 7, 267–272 (1995).

    Article  CAS  Google Scholar 

  21. Johnson, P.B., Ferraina, S., Bianchi, L. & Caminiti, R. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb. Cortex 6, 102–119 (1996).

    Article  CAS  Google Scholar 

  22. Ferraina, S. et al. Combination of hand and gaze signals during reaching: activity in parietal area 7 m of the monkey. J. Neurophysiol. 77, 1034–1038 (1997).

    Article  CAS  Google Scholar 

  23. Battaglia-Mayer, A. et al. Early coding of reaching in the parietooccipital cortex. J. Neurophysiol. 83, 2374–2391 (2000).

    Article  CAS  Google Scholar 

  24. Ferraina, S. et al. Early coding of visuomanual coordination during reaching in parietal area PEc. J. Neurophysiol. 85, 462–467 (2001).

    Article  CAS  Google Scholar 

  25. Fattori, P., Gamberini, M., Kutz, D.F. & Galletti, C. 'Arm-reaching' neurons in the parietal area V6A of the macaque monkey. Eur. J. Neurosci. 13, 2309–2313 (2001).

    Article  CAS  Google Scholar 

  26. Kalaska, J.F. & Crammond, D.J. Deciding not to GO: neuronal correlates of response selection in a GO/NOGO task in primate premotor and parietal cortex. Cereb. Cortex 5, 410–428 (1995).

    Article  CAS  Google Scholar 

  27. Wise, S.P. & Kurata, K. Set-related activity in the premotor cortex of rhesus monkeys: effect of triggering cues and relatively long delay intervals. Somatosens. Mot. Res. 6, 455–476 (1989).

    Article  CAS  Google Scholar 

  28. Basso, M.A. & Wurtz, R.H. Modulation of neuronal activity by target uncertainty. Nature 389, 66–69 (1997).

    Article  CAS  Google Scholar 

  29. Basso, M.A. & Wurtz, R.H. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci. 18, 7519–7534 (1998).

    Article  CAS  Google Scholar 

  30. Dorris, M.C. & Munoz, D.P. Saccadic probability influences motor preparation signals and time to saccadic initiation. J. Neurosci. 18, 7015–7026 (1998).

    Article  CAS  Google Scholar 

  31. Umeno, M.M. & Goldberg, M.E. Spatial processing in the monkey frontal eye field. II. Memory responses. J. Neurophysiol. 86, 2344–2352 (2001).

    Article  CAS  Google Scholar 

  32. Gold, J.I. & Shadlen, M.N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).

    Article  CAS  Google Scholar 

  33. Andersen, R.A., Essick, G.K. & Siegel, R.M. Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985).

    Article  CAS  Google Scholar 

  34. Boussaoud, D. & Bremmer, F. Gaze effects in the cerebral cortex: reference frames for space coding and action. Exp. Brain Res. 128, 170–180 (1999).

    Article  CAS  Google Scholar 

  35. Bichot, N.P., Schall, J.D. & Thompson, K.G. Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature 381, 697–699 (1996).

    Article  CAS  Google Scholar 

  36. Kustov, A.A. & Robinson, D.L. Shared neural control of attentional shifts and eye movements. Nature 384, 74–77 (1996).

    Article  CAS  Google Scholar 

  37. Colby, C.L. & Goldberg, M.E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    Article  CAS  Google Scholar 

  38. Assad, J.A. & Maunsell, J.H. Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature 373, 518–521 (1995).

    Article  CAS  Google Scholar 

  39. Eskandar, E.N. & Assad, J.A. Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nature Neurosci. 2, 88–93 (1999).

    Article  CAS  Google Scholar 

  40. Murata, A., Gallese, V., Kaseda, M. & Sakata, H. Parietal neurons related to memory-guided hand manipuation. J. Neurophysiol. 75, 2180–2186 (1996).

    Article  CAS  Google Scholar 

  41. Obayashi, S. et al. Functional brain mapping of monkey tool use. Neuroimage 14, 853–861 (2001).

    Article  CAS  Google Scholar 

  42. Ben Hamed, S., Duhamel, J.R., Bremmer, F. & Graf, W. Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis. Exp. Brain Res. 140, 127–144 (2001).

    Article  CAS  Google Scholar 

  43. Cisek, P. & Kalaska, J.F. Simultaneous encoding of multiple potential reach directions in dorsal premotor cortex. J. Neurophysiol. 87, 1149–1154 (2002).

    Article  Google Scholar 

  44. Colby, C.L. & Duhamel, J.R. Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29, 517–537 (1991).

    Article  CAS  Google Scholar 

  45. Colby, C.L., Gattass, R., Olson, C.R. & Gross, C.G. Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J. Comp. Neurol. 269, 392–413 (1988).

    Article  CAS  Google Scholar 

  46. Paxinos, G., Huang, X. & Toga, A.W. The Rhesus Monkey Brain in Stereotaxic Coordinates (Academic, San Diego, 2000).

    Google Scholar 

  47. Sakata, H. et al. Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. Phil. Trans. R. Soc. Lond. B Biol. Sci. 353, 1363–1373 (1998).

    Article  CAS  Google Scholar 

  48. Lewis, J.W. & Van Essen, D.C. Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428, 79–111 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y.E. Cohen, G.C. DeAngelis and J.H.R. Maunsell for comments on an early version of the manuscript, J. Baker, A. Snyder and D.C. Van Essen for the anatomical MR and T. Harper for technical assistance. This work was supported by the Klingenstein Fund, the Sloan Foundation, the McDonnell Center for Higher Brain Research and the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H. Snyder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calton, J., Dickinson, A. & Snyder, L. Non-spatial, motor-specific activation in posterior parietal cortex. Nat Neurosci 5, 580–588 (2002). https://doi.org/10.1038/nn0602-862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0602-862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing