Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-inhibition of olfactory bulb neurons

Abstract

The GABA (γ-aminobutyric-acid)-containing periglomerular (PG) cells provide the first level of inhibition to mitral and tufted (M/T) cells, the output neurons of the olfactory bulb. We find that stimulation of PG cells of the rat olfactory bulb results in self-inhibition: release of GABA from an individual PG cell activates GABAA receptors on the same neuron. PG cells normally contain high concentrations of intracellular chloride and consequently are depolarized by GABA. Despite this, GABA inhibits PG cell firing by shunting excitatory signals. Finally, GABA released during self-inhibition may spill over to neighboring PG cells, resulting in a lateral spread of inhibition. Given the gatekeeping role of PG cells in the olfactory network, GABA-mediated self-inhibition will favor M/T cell excitation during intense sensory stimulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Voltage steps evoke GABA receptor–mediated responses in PG cells.
Figure 2: Self-inhibition requires calcium influx and intracellular GABA.
Figure 3: The reversal potential for GABA-induced currents is depolarized from the resting potential.
Figure 4: GABA is depolarizing yet inhibitory.
Figure 5: PG cells show self-inhibition responses with physiological intracellular chloride.
Figure 6: GABA spillover in the olfactory bulb.

Similar content being viewed by others

References

  1. Shepherd, G.M. & Greer, C.A. The olfactory bulb. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 159–203 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  2. Mori, K., Nagao, H. & Yoshihara, Y. The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999).

    Article  CAS  Google Scholar 

  3. Rall, W., Shepherd, G.M., Reese, T.S. & Brightman, M.W. Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp. Neurol. 14, 44–56 (1966).

    Article  CAS  Google Scholar 

  4. Nicoll, R.A. Inhibitory mechanisms in the rabbit olfactory bulb: dendrodendritic mechanisms. Brain Res. 14, 157–172 (1969).

    Article  CAS  PubMed  Google Scholar 

  5. Price, J.L. & Powell, T.P.S. The synaptology of the granule cells of the olfactory bulb. J. Cell Sci. 7, 125–155 (1970).

    CAS  Google Scholar 

  6. Jahr, C.E. & Nicoll, R.A. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J. Physiol. 326, 213–234 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Isaacson, J.S. & Strowbridge, B.W. Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20, 749–761 (1998).

    Article  CAS  Google Scholar 

  8. Schoppa, N.E., Kinzie, J.M., Shara, Y., Segerson, T.P. & Westbrook, G.L. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. J. Neurosci. 18, 6790–6802 (1998).

    Article  CAS  Google Scholar 

  9. Ribak, C.E., Vaughn, J.E., Saito, K., Barber, R. & Roberts, E. Glutamate decarboxylase localization in neurons of the olfactory bulb. Brain Res. 126, 1–18 (1977).

    Article  CAS  Google Scholar 

  10. Kosaka, K., Toida, K., Aika, Y. & Kosaka, T. How simple is the organization of the olfactory glomerulus?: the heterogeneity of so-called periglomerular cells. Neurosci. Res. 30, 101–110 (1998).

    Article  CAS  Google Scholar 

  11. Pinching, A.J. & Powell, T.P.S. The neuron types of the glomerular layer of the olfactory bulb. J. Cell Sci. 9, 305–345 (1971).

    CAS  PubMed  Google Scholar 

  12. Pinching, A.J. & Powell, T.P.S. The neuropil of the glomeruli of the olfactory bulb. J. Cell Sci. 9, 347–377 (1971).

    CAS  Google Scholar 

  13. Kasowski, H.J., Kim, H. & Greer, C.A. Compartmental organization of the olfactory bulb glomerulus. J. Comp. Neurol. 407, 261–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Nicoll, R.A. & Jahr, C.E. Self-excitation of olfactory bulb neurones. Nature 296, 441–444 (1982).

    Article  CAS  Google Scholar 

  15. Isaacson, J.S. Glutamate spillover mediates excitatory transmission in the rat olfactory bulb. Neuron 23, 377–384 (1999).

    Article  CAS  Google Scholar 

  16. Friedman, D. & Strowbridge, B.W. Functional role of NMDA autoreceptors in olfactory mitral cells. J. Neurophysiol. 84, 39–50 (2000).

    Article  CAS  Google Scholar 

  17. Christie, J.M., Schoppa, N.E. & Westbrook, G.L. Tufted cell dendrodendritic inhibition in the olfactory bulb is dependent on NMDA receptor activity. J. Neurophysiol. 85, 169–173 (2001).

    Article  CAS  Google Scholar 

  18. Laurie, D.J., Seeburg, P.H. & Wisden, W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J. Neurosci. 12, 1063–1076 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Fritschy, J.M. & Mohler, H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359, 154–194 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Salin, P.-A., Lledo, P.-M., Vincent, J.-D. & Charpak, S. Dendritic glutamate autoreceptors modulate signal processing in rat mitral cells. J. Neurophysiol. 85, 1275–1282 (2001).

    Article  CAS  Google Scholar 

  21. McIntire, S.L., Reimer, R.J., Schuske, K., Edwards, R.H. & Jorgensen, E.M. Identification and characterization of the vesicular GABA transporter. Nature 389, 870–876 (1997).

    Article  CAS  Google Scholar 

  22. Burger, P.M. et al. GABA and glycine in synaptic vesicles: storage and transport characteristics. Neuron 7, 287–293 (1991).

    Article  CAS  Google Scholar 

  23. Traynelis, S.F., Silver, R.A. & Cull-Candy, S.G. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 11, 279–289 (1993).

    Article  CAS  Google Scholar 

  24. Kyrozis, A. & Reichling, D.B. Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration. J. Neurosci. Methods 57, 27–35 (1995).

    Article  CAS  Google Scholar 

  25. Wellis, D.P. & Scott, J.W. Intracellular responses of identified rat olfactory bulb interneurons to electrical and odor stimulation. J. Neurophysiol. 64, 932–947 (1990).

    Article  CAS  Google Scholar 

  26. Jahr, C.E. & Nicoll, R.A. Noradrenergic modulation of dendrodendritic inhibition in the olfactory bulb. Nature 297, 227–229 (1982).

    Article  CAS  Google Scholar 

  27. Pinching, A.J. & Powell, T.P.S. The neuropil of the periglomerular region of the olfactory bulb. J. Cell Sci. 9, 379–409 (1971).

    CAS  Google Scholar 

  28. Puopolo, M. & Belluzzi, O. Functional heterogeneity of periglomerular cells in the rat olfactory bulb. Eur. J. Neurosci. 10, 1073–1083 (1998).

    Article  CAS  Google Scholar 

  29. Shepherd, G.M. Neuronal systems controlling mitral cell excitability. J. Physiol. (Lond.) 168, 101–117 (1963).

    Article  CAS  Google Scholar 

  30. Schneider, S.P. & Scott, J.W. Orthodromic response properties of rat olfactory bulb mitral and tufted cells correlate with their projection patterns. J. Neurophysiol. 50, 358–378 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. McQuiston, A.R. & Katz, L.C. Electrophysiology of interneurons in the glomerular layer of the rat olfactory bulb. J. Neurophysiol. 86, 1899–1907 (2001).

    Article  CAS  Google Scholar 

  32. Chen, W.R., Xiong, W. & Shepherd, G.M. Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses. Neuron 25, 625–633 (2000).

    Article  CAS  Google Scholar 

  33. Halabisky, B., Friedman, D., Radojicic, M. & Strowbridge, B.W. Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells. J. Neurosci. 20, 5124–5134 (2000).

    Article  CAS  Google Scholar 

  34. Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. (Lond.) 531, 807–826 (2001).

    Article  CAS  Google Scholar 

  35. Pouzat, C. & Marty, A. Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket cells. J. Neurosci. 19, 1675–1690 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Segal, M.M. & Furshpan, E.J. Epileptiform activity in microcultures containing small numbers of hippocampal neurons. J. Neurophysiol. 64, 1390–1399 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. White, E.L. Synaptic organization in the olfactory glomerulus of the mouse. Brain Res. 37, 69–80 (1972).

    Article  CAS  Google Scholar 

  38. Lu, T. & Trussell, L.O. Mixed excitatory and inhibitory GABA-mediated transmission in chick cochlear nucleus. J. Physiol. (Lond.) 535, 125–131 (2001).

    Article  CAS  Google Scholar 

  39. Siklos, L., Rickmann, M., Joo, F., Freeman, W.J. & Wolff, J.R. Chloride is preferentially accumulated in a subpopulation of dendrites and periglomerular cells of the main olfactory bulb in adult rats. Neuroscience 64, 165–172 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Staley, K.J. & Mody, I. Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABA-A receptor-mediated postsynaptic conductance. J. Neurophysiol. 68, 197–212 (1992).

    Article  CAS  Google Scholar 

  41. Zhang, S.J. & Jackson, M.B. GABAA receptor activation and the excitability of nerve terminals in the rat posterior pituitary. J. Physiol. (Lond.) 483, 583–595 (1995).

    Article  CAS  Google Scholar 

  42. Eccles, J.C., Magni, F. & Willis, W.D. Depolarization of central terminals of group 1a afferent fibres from muscle. J. Physiol. (Lond.) 160, 532–540 (1962).

    Article  Google Scholar 

  43. Nicoll, R.A. Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog. J. Physiol. (Lond.) 290, 113–127 (1979).

    Article  CAS  Google Scholar 

  44. Aroniadou-Anderjaska, V., Zhou, F.M., Priest, C.A., Ennis, M. & Shipley, M.T. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABAB heteroreceptors. J. Neurophysiol. 84, 1194–1203 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Jahr lab for suggestions. This work was supported by the National Institutes of Health, F32 NS11093 (T.C.S.) and NS21419 (C.E.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig E. Jahr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, T., Jahr, C. Self-inhibition of olfactory bulb neurons. Nat Neurosci 5, 760–766 (2002). https://doi.org/10.1038/nn882

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing