Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity

Abstract

Memory for past events can be based on recollection or on assessments of familiarity. These two forms of human memory have been studied extensively by philosophers and psychologists, but their neuroanatomical substrates are largely unknown. Here we examined the brain regions that are involved in these two forms of memory by studying patients with damage to different temporal lobe regions. Our results come from (i) structural covariance modeling of recall and recognition, (ii) introspective reports during recognition and (iii) analysis of receiver operating characteristics. In sum, we found that the regions disrupted in mild hypoxia, such as the hippocampus, are centrally involved in conscious recollection, whereas the surrounding temporal lobe supports familiarity-based memory discrimination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recall and recognition in hypoxia.
Figure 2: Modeling the effects of hypoxia on recollection and familiarity.
Figure 3
Figure 4: Estimating recollection and familiarity in recognition memory.

Similar content being viewed by others

References

  1. Scoville, W.B. & Milner, B.J. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  Google Scholar 

  2. Parkin, A.J. & Leng, R.C. Neuropsychology of the Amnesic Syndrome (Erlbaum, Hillsdale, New Jersey, 1993).

    Google Scholar 

  3. Amaral, D.G. What is where in the medial temporal lobe? Hippocampus 9, 1–6 (1999).

    Article  CAS  Google Scholar 

  4. Duvernoy, H.M. The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI (Springer, New York, 1998).

    Book  Google Scholar 

  5. Aggleton, J.P. & Brown, M.W. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav. Brain Sci. 22, 425–489 (1999).

    CAS  PubMed  Google Scholar 

  6. Eichenbaum, H., Otto, T. & Cohen, N.J. The hippocampal system: dissociating its functional components and recombining them in the service of declarative memory. Behav. Brain Sci. 17, 449–776 (1994).

    Article  Google Scholar 

  7. Gabrieli, J.D.E., Brewer, J.B., Desmond, J.E. & Glover, G.H. Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science, 276, 264–266 (1997).

    Article  CAS  Google Scholar 

  8. Henson, R.N.A., Rugg, M.D., Shallice, T., Josephs, O. & Dolan, R.J. Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J. Neurosci. 19, 3962–3972 (1999).

    Article  CAS  Google Scholar 

  9. Eldridge, L.L., Knowlton, B.J., Furmanski, C.S., Bookheimer, S.Y. & Engel, S.A. Remembering episodes: a selective role for the hippocampus during retrieval. Nat. Neurosci. 3, 1149–1152 (2000).

    Article  CAS  Google Scholar 

  10. Yonelinas, A.P., Kroll, N.E.A., Dobbins, I., Lazzara, M.M. & Knight, R.T. Recollection and familiarity deficits in amnesia: convergence of remember/know, process dissociation and receiver operating characteristic data. Neuropsychology 12, 323–339 (1998).

    Article  CAS  Google Scholar 

  11. Rempel-Clower, N.L., Zola, S.M., Squire, L.R. & Amaral, D.G. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J. Neurosci. 16, 5233–5255 (1996).

    Article  CAS  Google Scholar 

  12. Hopkins, R.O., Kesner, R.P. & Goldstein, M. Item and order recognition memory in subjects with hypoxic brain injury. Brain Cogn. 27, 180–201 (1995).

    Article  CAS  Google Scholar 

  13. Gadian, D.G. et al. Developmental amnesia associated with early hypoxic-ischaemic injury. Brain 123, 499–507 (2000).

    Article  Google Scholar 

  14. Zola, S.M. & Squire, L.R. in The Oxford Handbook of Memory (eds. Tulving, E. & Craik, F. I. M.) 485–500 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  15. Aggleton, J.P. & Shaw, C. Amnesia and recognition memory: a re-analysis of psychometric data. Neuropsychologia 34, 51–62 (1996).

    Article  CAS  Google Scholar 

  16. Mandler, G. Recognizing: the judgment of previous occurrence. Psychol. Rev. 87, 252–271 (1980).

    Article  Google Scholar 

  17. Nunally, J.C. & Bernstein, I.H. Psychometric Theory (McGraw-Hill, New York, 1994).

    Google Scholar 

  18. Janowsky, J.S., Shimamura, A.P., Kritchevsky, M. & Squire, L.R. Cognitive impairment following frontal lobe damage and its relevance to human amnesia. Behav. Neurosci. 103, 548–560 (1989).

    Article  CAS  Google Scholar 

  19. Jöreskog, K.G. in Contemporary Developments in Mathematical Psychology: Measurement, Psychophysics and Neural Information Processing (eds. Krantz, D. H. et al.) 1–56 (W. H. Freeman, New York, 1974).

    Google Scholar 

  20. Nyberg, L. A structural equation modeling approach to the multiple memory systems question. J. Exp. Psychol. Learn. Mem. Cogn. 20, 485–491 (1994).

    Article  Google Scholar 

  21. Sauve, M.J. et al. Factors associated with cognitive recovery after cardiopulmonary resuscitation. Am. J. Critical Care 5, 127–139 (1996).

    CAS  Google Scholar 

  22. Tulving, E. Memory and consciousness. Can. J. Exp. Psychol. 26, 1–12 (1985).

    Google Scholar 

  23. Macmillan, N.A. & Creelman, C.D. Detection Theory: a User's Guide (Cambridge Univ. Press, New York, 1991, p. 407).

    Google Scholar 

  24. Yonelinas, A.P., Hopfinger, J.B., Buonocore, M.H., Kroll, N.E.A. & Baynes, K. Hippocampal, parahippocampal and occipital-temporal contributions to associative and item recognition memory: an fMRI study. Neuroreport 12, 359–363 (2001).

    Article  CAS  Google Scholar 

  25. Squire, L.R. & Zola, S.M. Episodic memory, semantic memory and amnesia. Hippocampus 8, 205–211 (1998).

    Article  CAS  Google Scholar 

  26. Tulving, E. & Markowitsch, H.J. Episodic and declarative memory: role of the hippocampus. Hippocampus 8, 198–204 (1998).

    Article  CAS  Google Scholar 

  27. Mishkin, M., Vargha-Khadem, F. & Gadian, D.G. Amnesia and the organization of the hippocampal system. Hippocampus 8, 212–216 (1998).

    Article  CAS  Google Scholar 

  28. Kuwert, T. et al. Post-hypoxic amnesia: regional cerebral glucose consumption measured by positron emission tomography. J. Neurol. Sci. 118, 10–16 (1993).

    Article  CAS  Google Scholar 

  29. Schmidt-Kastner, R. & Freund, T.F. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40, 599–636 (1991).

    Article  CAS  Google Scholar 

  30. Caine, D. & Watson, J.D. Neuropsychological and neuropathological sequelae of cerebral anoxia: a critical review. J. Int. Neuropsychol. Soc. 6, 86–99 (2000).

    Article  CAS  Google Scholar 

  31. Markowitsch, H.J., Weber-Luxemburger, G., Ewald, K., Kessler, J. & Heiss, W.D. Patients with heart attacks are not valid models for medial temporal lobe amnesia. A neurological and FDG-PET study with consequences for memory research. Eur. J. Neurol. 4, 178–184 (1997).

    Article  CAS  Google Scholar 

  32. Vargha-Khadem, F. et al. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–80 (1997).

    Article  CAS  Google Scholar 

  33. Hopkins, R.O., Kesner, R.P. & Goldstein, M. Item and order recognition memory in subjects with hypoxic brain injury. Brain Cogn. 27, 180–201 (1995).

    Article  CAS  Google Scholar 

  34. Press, G.A., Amaral, D.G. & Squire, L.R. Hippocampal abnormalities in amnesic patients revealed by high-resolution magnetic resonance imaging. Nature 7, 54–57 (1998).

    Google Scholar 

  35. Kartsounis, L.D., Rudge, P. & Stevens, J.M. Bilateral lesions of CA1 and CA2 fields of the hippocampus are sufficient to cause a severe amnesic syndrome in humans. J. Neurol. Neurosurg. Psychiatry 59, 95–98 (1995).

    Article  CAS  Google Scholar 

  36. Cummings, J.L., Tomiyasu, U., Read, S. & Benson, D.F. Amnesia with hippocampal lesions after cardiopulmonary arrest. Neurology 34, 679–681 (1984).

    Article  CAS  Google Scholar 

  37. Zola-Morgan, S., Squire, L.R. & Amaral, D.G. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J. Neurosci. 6, 2950–2967 (1986).

    Article  CAS  Google Scholar 

  38. Smith, M.L., Auer, R.N. & Siesjo, B.K. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol. 64, 319–332 (1984).

    Article  CAS  Google Scholar 

  39. Baddeley, A., Vargha-Khadem, F. & Mishkin, M. Preserved recognition in a case of developmental amnesia: implications for the acquisition of semantic memory? J. Cogn. Neurosci. 13, 357–369 (2001).

    Article  CAS  Google Scholar 

  40. Düzel, E., Vargha-Khadem, F., Heinze, H.J. & Mishkin, M. Brain activity evidence for recognition without recollection after early hippocampal damage. Proc. Natl. Acad. Sci. USA 98, 8101–8106 (2001).

    Article  Google Scholar 

  41. Schacter, D.L., Chiu, C.Y.P. & Ochsner, K.N. Implicit memory: a selective review. Annu. Rev. Neurosci. 16, 159–182 (1993).

    Article  CAS  Google Scholar 

  42. Wagner, A.D., Gabrieli, J.D.E. & Verfaellie, M. Dissociations between familiarity processes in explicit recognition and implicit perceptual memory. J. Exp. Psychol. Learn. Mem. Cogn. 23, 305–323 (1997).

    Article  CAS  Google Scholar 

  43. Buckner, R.L. et al. Functional anatomical studies of explicit and implicit memory retrieval tasks. J. Neurosci. 15, 12–29 (1995).

    Article  CAS  Google Scholar 

  44. Schacter, D.L., Alpert, N.M., Savage, C.R., Rauch, S.L. & Albert, M.S. Conscious recollection and the human hippocampal formation: evidence from positron emission tomography. Proc. Natl. Acad. Sci. USA 93, 321–325 (1996).

    Article  CAS  Google Scholar 

  45. Hamann, S.B. & Squire, L.R. Intact perceptual memory in the absence of conscious memory. Behav. Neurosci. 111, 850–854 (1997).

    Article  CAS  Google Scholar 

  46. Rey, A. L'Examen Clinique en Psychologie (Presses Univ. de France, Paris, 1964).

    Google Scholar 

  47. Wechsler, D. The Wechsler Memory Scale-R (Psychological Corp., Harcourt Brace Jovanovich, New York, 1987).

    Google Scholar 

  48. Yonelinas, A.P. & Jacoby, L.L. The relation between remembering and knowing as bases for recognition: effects of size congruency. J. Mem. Lang. 34, 622–643 (1995).

    Article  Google Scholar 

  49. Jennings, J.M. & Jacoby, L.L. Automatic versus intentional uses of memory: aging, attention, and control. Psychol. Aging 8, 283–293 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (grants MH59352, NS21135 and NS40813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Yonelinas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yonelinas, A., Kroll, N., Quamme, J. et al. Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity. Nat Neurosci 5, 1236–1241 (2002). https://doi.org/10.1038/nn961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing