Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling

Abstract

Communication between glial cells and neurons is emerging as a critical parameter of synaptic function. However, the molecular mechanisms underlying the ability of glial cells to modify synaptic structure and physiology are poorly understood. Here we describe a repulsive interaction that regulates postsynaptic morphology through the EphA4 receptor tyrosine kinase and its ligand ephrin-A3. EphA4 is enriched on dendritic spines of pyramidal neurons in the adult mouse hippocampus, and ephrin-A3 is localized on astrocytic processes that envelop spines. Activation of EphA4 by ephrin-A3 was found to induce spine retraction, whereas inhibiting ephrin/EphA4 interactions distorted spine shape and organization in hippocampal slices. Furthermore, spine irregularities in pyramidal neurons from EphA4 knockout mice and in slices transfected with kinase-inactive EphA4 indicated that ephrin/EphA4 signaling is critical for spine morphology. Thus, our data support a model in which transient interactions between the ephrin-A3 ligand and the EphA4 receptor regulate the structure of excitatory synaptic connections through neuroglial cross-talk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic localization and activation of EphA4 in the mouse hippocampus.
Figure 2: Regulation of spine morphology by EphA receptors in adult hippocampal slices.
Figure 3: Enriched expression of ephrin-A3 in the adult mouse hippocampus.
Figure 4: Distorted spine morphology in the absence of EphA4.
Figure 5: EphA4 forward signaling controls spine morphology.
Figure 6: EphB receptor activation induces modest changes in dendritic spine parameters in area CA1.
Figure 7: Triple labeling shows ephrin-A3 on astrocytic processes (red) encompassing a synaptophysin-positive presynaptic terminal (blue) and YFP (green) to label the dendritic spine of a CA1 pyramidal neuron where EphA4 is localized.

Similar content being viewed by others

References

  1. Salzer, J.L. Clustering sodium channels at the node of Ranvier: close encounters of the axon-glia kind. Neuron 18, 843–846 (1997).

    Article  CAS  Google Scholar 

  2. Ventura, R. & Harris, K.M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).

    Article  CAS  Google Scholar 

  3. Araque, A., Parpura, V., Sanzgiri, R.P. & Haydon, P.G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999).

    Article  CAS  Google Scholar 

  4. Haydon, P.G. GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2001).

    Article  CAS  Google Scholar 

  5. Ullian, E.M., Sapperstein, S.K., Christopherson, K.S. & Barres, B.A. Control of synapse number by glia. Science 291, 657–661 (2001).

    Article  CAS  Google Scholar 

  6. Murai, K.K. & Pasquale, E.B. Can Eph receptors stimulate the mind? Neuron 33, 159–162 (2002).

    Article  CAS  Google Scholar 

  7. Pasquale, E.B. The Eph family of receptors. Curr. Opin. Cell Biol. 9, 608–615 (1997).

    Article  CAS  Google Scholar 

  8. Ethell, I.M. et al. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31, 1001–1013 (2001).

    Article  CAS  Google Scholar 

  9. Dalva, M. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    Article  CAS  Google Scholar 

  10. Takasu, M.A., Dalva, M.B., Zigmond, R.E. & Greenberg, M.E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491–495 (2002).

    Article  CAS  Google Scholar 

  11. Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. & Yuste, R. Developmental regulation of spine motility in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 96, 13438–13443 (1999).

    Article  CAS  Google Scholar 

  12. Dunaevsky, A., Blazeski, R., Yuste, R. & Mason, C. Spine motility with synaptic contact. Nat. Neurosci. 4, 685–686 (2001).

    Article  CAS  Google Scholar 

  13. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

    Article  CAS  Google Scholar 

  14. Harris, K.M. & Kater, S.B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371 (1994).

    Article  CAS  Google Scholar 

  15. Kaufmann, W.E. & Moser, H.W. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex 10, 981–991 (2000).

    Article  CAS  Google Scholar 

  16. Glantz, L.A. & Lewis, D.A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57, 65–73 (2000).

    Article  CAS  Google Scholar 

  17. Zhang, J.H., Cerretti, D.P., Yu, T., Flanagan, J.G. & Zhou, R. Detection of ligands in regions anatomically connected to neurons expressing the Eph receptor Bsk: potential roles in neuron-target interaction. J. Neurosci. 16, 7182–7192 (1996).

    Article  CAS  Google Scholar 

  18. Martone, M.E., Holash, J.A., Bayardo, A., Pasquale, E.B. & Ellisman, M.H. Immunolocalization of the receptor tyrosine kinase EphA4 in the adult rat central nervous system. Brain Res. 771, 238–250 (1997).

    Article  CAS  Google Scholar 

  19. Henderson, J.T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041–1056 (2001).

    Article  CAS  Google Scholar 

  20. Gerlai, R. & McNamara, A. Anesthesia induced retrograde amnesia is ameliorated by ephrinA5-IgG in mice: EphA receptor tyrosine kinases are involved in mammalian memory. Behav. Brain Res. 108, 133–143 (2000).

    Article  CAS  Google Scholar 

  21. Gerlai, R. Eph receptors and neural plasticity. Nat. Rev. Neurosci. 2, 205–209 (2001).

    Article  CAS  Google Scholar 

  22. Mann, F., Ray, S., Harris, W. & Holt, C. Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 35, 461–473 (2002).

    Article  CAS  Google Scholar 

  23. Flanagan, J.G. & Vanderhaeghen, P. The Ephrins and EPH receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  Google Scholar 

  24. Stein, E. et al. A role for the Eph ligand ephrin-A3 in entorhino-hippocampal axon targeting. J. Neurosci. 19, 8885–8893 (1999).

    Article  CAS  Google Scholar 

  25. Lai, K.O., Ip, F.C. & Ip, N.Y. Identification and characterization of splice variants of ephrin-A3 and ephrin-A5. FEBS Lett. 458, 265–269 (1999).

    Article  CAS  Google Scholar 

  26. Pasini, A. & Wilkinson, D.G. Stabilizing the regionalization of the developing vertebrate central nervous system. Bioessays 24, 427–438 (2002).

    Article  CAS  Google Scholar 

  27. Bushong, E.A., Martone, M.E., Jones, Y.Z. & Ellisman, M.H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002).

    Article  CAS  Google Scholar 

  28. Davenport, R.W., Thies, E., Zhou, R. & Nelson, P.G. Cellular localization of ephrin-A2, ephrin-A5, and other functional guidance cues underlies retinotopic development across species. J. Neurosci. 18, 975–986 (1998).

    Article  CAS  Google Scholar 

  29. Pak, D.T., Yang, S., Rudolph-Correia, S., Kim, E. & Sheng, M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31, 289–303 (2001).

    Article  CAS  Google Scholar 

  30. McCall, M.A. et al. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc. Natl. Acad. Sci. USA 93, 6361–6366 (1996).

    Article  CAS  Google Scholar 

  31. Korkotian, E. & Segal, M. Structure–function relations in dendritic spines: is size important? Hippocampus 10, 587–595 (2000).

    Article  CAS  Google Scholar 

  32. Chelly, J. Breakthroughs in molecular and cellular mechanisms underlying X-linked mental retardation. Hum. Mol. Genet. 8, 1833–1838 (1999).

    Article  CAS  Google Scholar 

  33. Shamah, S.M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    Article  CAS  Google Scholar 

  34. Dodelet, V.C., Pazzagli, C., Zisch, A.H., Hauser, C.A. & Pasquale, E.B. A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A. J. Biol. Chem. 274, 31941–31946 (1999).

    Article  CAS  Google Scholar 

  35. Yue, Y. et al. Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc. Natl. Acad. Sci. USA 99, 10777–10782 (2002).

    Article  CAS  Google Scholar 

  36. Grunwald, I.C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040 (2001).

    Article  CAS  Google Scholar 

  37. Contractor, A. et al. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296, 1864–1869 (2002).

    Article  CAS  Google Scholar 

  38. Irie, F. & Yamaguchi, Y. EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nat. Neurosci. 5, 1117–1118 (2002).

    Article  CAS  Google Scholar 

  39. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).

    Article  CAS  Google Scholar 

  40. Murai, K.K., Misner, D. & Ranscht, B. Contactin supports synaptic plasticity associated with hippocampal long-term depression but not potentiation. Curr. Biol. 12, 181–190 (2002).

    Article  CAS  Google Scholar 

  41. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Dottori and A. Boyd for providing EphA4 knockout mice, R. Zhou for providing the mouse ephrin-A3 cDNA, D. Melendez for technical assistance, E. Monosov for assistance with confocal microscopy, C. Lennert for advice on statistical analysis and B. Ranscht for critical reading of the manuscript. Supported by the National Institutes of Health (HD25938 and EY10576 to E.B.P. and NS43029 to K.K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena B. Pasquale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

Cultured hippocampal neurons lose most EphA4 expression after dissociation and are unaffected by ephrin-A3 stimulation. (a) Dissociated hippocampal neurons at 2 and 3 weeks in vitro do not express detectable levels of EphA4 (green) and are solely labeled for MAP2 (red). At 4 weeks in vitro, only weak diffuse expression of EphA4 is detectable along the entire length of neurites. Ephrin-A3 is also not detected at 2 and 3 weeks in vitro (expression at 4 weeks not determined; scale = 50μm). (b) Hippocampal neurons treated with ephrin-A3 Fc for 45 minutes do not show overt differences in spine morphology compared to Fc-treated neurons (scale = 10μm). (PDF 1118 kb)

Supplementary Fig. 2.

Laser capture microdissection and RT-PCR show that ephrin-A3 mRNA is in astrocytes derived from the neuropil of area CA1. (Top Panel) Captured CA1 pyramidal neurons (N) contain EphA4 mRNA and not mRNA for GFAP (glial-fibrillary acidic protein) or ephrin-A3. β-actin mRNA serves as a positive control. (Middle Panel) Captured astrocytes with interspersed neuronal processes (G + N) contain ephrin-A3 and GFAP mRNA, in addition to EphA4 mRNA. Ephrin-A3 is only detected when GFAP is present. (Lower Panel) Representative example of a tissue section before (left) and after (right) laser capture microdissection. Note: not all cells are lifted off with the procedure. CA1 pyramidal neurons (N) and astrocytes with surrounding neuronal processes (G + N) were taken from approximately 50 sites in each preparation and used to isolate mRNA. (PDF 579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murai, K., Nguyen, L., Irie, F. et al. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6, 153–160 (2003). https://doi.org/10.1038/nn994

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn994

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing