Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology

Abstract

In biological fluids, proteins bind to the surface of nanoparticles to form a coating known as the protein corona, which can critically affect the interaction of the nanoparticles with living systems. As physiological systems are highly dynamic, it is important to obtain a time-resolved knowledge of protein-corona formation, development and biological relevancy. Here we show that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization. Complex time- and nanoparticle-specific coronas, which comprise almost 300 different proteins, were found to form rapidly (<0.5 minutes) and, over time, to change significantly in terms of the amount of bound protein, but not in composition. Rapid corona formation is found to affect haemolysis, thrombocyte activation, nanoparticle uptake and endothelial cell death at an early exposure time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein coronas and their composition are established rapidly.
Figure 2: Correlation analysis reveals distinct kinetic protein-binding modalities during corona evolution.
Figure 3: Rapid corona formation kinetically impacts nanopathophysiology.
Figure 4: Bioinformatic classification of corona components.

Similar content being viewed by others

References

  1. Riehemann, K. et al. Nanomedicine—challenge and perspectives. Angew. Chem. Int. Ed. 48, 872–897 (2009).

    Article  CAS  Google Scholar 

  2. Chauhan, V. P. et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nature Nanotech. 7, 383–388 (2012).

    Article  CAS  Google Scholar 

  3. von Maltzahn, G. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Mater. 10, 545–552 (2012).

    Article  Google Scholar 

  4. Minchin, R. Nanomedicine: sizing up targets with nanoparticles. Nature Nanotech. 3, 12–13 (2008).

    Article  CAS  Google Scholar 

  5. Teli, M. K., Mutalik, S. & Rajanikant, G. K. Nanotechnology and nanomedicine: going small means aiming big. Curr. Pharm. Des. 16, 1882–1892 (2010).

    Article  CAS  Google Scholar 

  6. Smita, S. et al. Nanoparticles in the environment: assessment using the causal diagram approach. Environ. Health 11 (suppl. 1), S13 (2012).

    Article  Google Scholar 

  7. Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotech. 7, 779–786 (2012).

    Article  CAS  Google Scholar 

  8. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  9. Nystrom, A. M. & Fadeel, B. Safety assessment of nanomaterials: implications for nanomedicine. J. Control. Release 161, 403–408 (2012).

    Article  Google Scholar 

  10. Thomas, C. R. et al. Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano 5, 13–20 (2011).

    Article  CAS  Google Scholar 

  11. Oberdörster, G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J. Intern. Med. 267, 89–105 (2011).

    Article  Google Scholar 

  12. Xia, X. R., Monteiro-Riviere, N. A. & Riviere, J. E. An index for characterization of nanomaterials in biological systems. Nature Nanotech. 5, 671–675 (2010).

    Article  CAS  Google Scholar 

  13. Monopoli, M. P., Bombelli, F. B. & Dawson, K. A. Nanobiotechnology: nanoparticle coronas take shape. Nature Nanotech. 6, 11–12 (2011).

    Article  CAS  Google Scholar 

  14. Monopoli, M. P. et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011).

    Article  CAS  Google Scholar 

  15. Tenzer, S. et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5, 7155–7167 (2011).

    Article  CAS  Google Scholar 

  16. Zhang, H. et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 11, 4569–4577 (2011).

    Article  CAS  Google Scholar 

  17. Dobrovolskaia, M. A., Germolec, D. R. & Weaver, J. L. Evaluation of nanoparticle immunotoxicity. Nature Nanotech. 4, 411–414 (2009).

    Article  CAS  Google Scholar 

  18. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotech. 8, 137–143 (2013).

    Article  CAS  Google Scholar 

  19. Casals, E., Pfaller, T., Duschl, A., Oostingh, G. J. & Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano 4, 3623–3632 (2010).

    Article  CAS  Google Scholar 

  20. Jaskiewicz, K. et al. Probing bioinspired transport of nanoparticles into polymersomes. Angew. Chem. Int. Ed. 51, 4613–4617 (2012).

    Article  CAS  Google Scholar 

  21. Lunov, O. et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5, 1657–1669 (2011).

    Article  CAS  Google Scholar 

  22. Lesniak, A. et al. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6, 5845–5857 (2012).

    Article  CAS  Google Scholar 

  23. Van Hoecke, K. et al. Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology 7, 37–47 (2013).

    Article  CAS  Google Scholar 

  24. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  Google Scholar 

  25. Walczyk, D., Bombelli, F. B., Monopoli, M. P., Lynch, I. & Dawson, K. A. What the cell ‘sees’ in bionanoscience. J. Am. Chem. Soc. 132, 5761–5768 (2010).

    Article  CAS  Google Scholar 

  26. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

    Article  CAS  Google Scholar 

  27. Huhn, D. et al. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 7, 3253–3263 (2013).

    Article  Google Scholar 

  28. Vroman, L. Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196, 476–477 (1962).

    Article  CAS  Google Scholar 

  29. Lundqvist, M. et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5, 7503–7509 (2011).

    Article  CAS  Google Scholar 

  30. Gebauer, J. S. et al. Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28, 9673–9679 (2012).

    Article  CAS  Google Scholar 

  31. Dell'Orco, D., Lundqvist, M., Oslakovic, C., Cedervall, T. & Linse, S. Modeling the time evolution of the nanoparticle–protein corona in a body fluid. PLoS One 5, e10949 (2010).

    Article  Google Scholar 

  32. Calzolai, L., Franchini, F., Gilliland, D. & Rossi, F. Protein–nanoparticle interaction: identification of the ubiquitin–gold nanoparticle interaction site. Nano Lett. 10, 3101–3105 (2010).

    Article  CAS  Google Scholar 

  33. Vogler, E. A. Protein adsorption in three dimensions. Biomaterials 33, 1201–1237 (2012).

    Article  CAS  Google Scholar 

  34. Hamad, I. et al. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere–serum interface: implications for stealth nanoparticle engineering. ACS Nano 4, 6629–6638 (2010).

    Article  CAS  Google Scholar 

  35. Lunov, O. et al. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31, 9015–9022 (2010).

    Article  CAS  Google Scholar 

  36. Sim, R. B. & Wallis, R. Surface properties: immune attack on nanoparticles. Nature Nanotech. 6, 80–81 (2011).

    Article  CAS  Google Scholar 

  37. Rivera Gil, P., Oberdörster, G., Elder, A., Puntes, V. & Parak, W. J. Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4, 5527–5531 (2011).

    Article  Google Scholar 

  38. Schousboe, I. & Nystrom, B. High molecular weight kininogen binds to laminin—characterization and kinetic analysis. FEBS J. 276, 5228–5238 (2009).

    Article  CAS  Google Scholar 

  39. Zensi, A. et al. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood–brain barrier and enter the rodent brain. J. Drug Target. 18, 842–848 (2010).

    Article  CAS  Google Scholar 

  40. Zensi, A. et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Release 137, 78–86 (2009).

    Article  CAS  Google Scholar 

  41. Aggarwal, P., Hall, J. B., McLeland, C. B., Dobrovolskaia, M. A. & McNeil, S. E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61, 428–437 (2009).

    Article  CAS  Google Scholar 

  42. Reinhardt, C. et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483, 627–631 (2011).

    Article  Google Scholar 

  43. Engels, K. et al. NO signaling confers cytoprotectivity through the survivin network in ovarian carcinomas. Cancer Res. 68, 5159–5166 (2008).

    Article  CAS  Google Scholar 

  44. Knauer, S. K. et al. Functional characterization of novel mutations affecting survivin (BIRC5)-mediated therapy resistance in head and neck cancer patients. Hum. Mutat. 34, 395–404 (2012).

    Article  Google Scholar 

  45. Bier, C. et al. Allosteric inhibition of Taspase1's pathobiological activity by enforced dimerization in vivo. FASEB J. 26, 3421–3429 (2012).

    Article  CAS  Google Scholar 

  46. Bauer, M. et al. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol. Biosci. 12, 986–998 (2012).

    Article  CAS  Google Scholar 

  47. Tenzer, S. et al. Proteome-wide characterization of the RNA-binding protein RALY-interactome using the in vivo-biotinylation-pulldown-quant (iBioPQ) approach. J. Proteome Res. 12, 2869–2884 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants DFG-SPP1313 and DFG-SFB490/Z3 and by BMBF-NanoKon/NanoMed/MRCyte, Zeiss-ChemBioMed, University Mainz Forschungszentrum Immunologie, Research Center for Immunology and Stiftung Rheinland-Pfalz (NANOSCH, NanoScreen). We thank R. Spohrer for preparation of the manuscript sample, S. Schneider for technical assistance and R. Zellner for discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.H.S., S.T. and D.D. conceived and designed the study. S.T., D.D., J.K., V.F., R.H., F.S., K.K. and S.K.K. performed the experiments. A.M., F.S., D.F., K.L. and M.M. synthesized and characterized nanoparticles. S.T., J.K., D.F., C.R., K.L., H.S., M.M., S.K.K. and R.H.S. analysed data. R.H.S., S.K.K. and S.T. wrote the manuscript and Supplementary Information.

Corresponding authors

Correspondence to Stefan Tenzer or Roland H. Stauber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 30771 kb)

Supplementary information

Supplementary Table 3 (XLSX 191 kb)

Supplementary information

Supplementary Table 4 (XLSX 501 kb)

Supplementary information

Supplementary Table 6 (XLSX 60 kb)

Supplementary information

Supplementary Table 7 (XLSX 258 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenzer, S., Docter, D., Kuharev, J. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotech 8, 772–781 (2013). https://doi.org/10.1038/nnano.2013.181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing