Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Creating biomolecular motors based on dynein and actin-binding proteins

Abstract

Biomolecular motors such as myosin, kinesin and dynein are protein machines that can drive directional movement along cytoskeletal tracks1,2 and have the potential to be used as molecule-sized actuators3,4. Although control of the velocity and directionality of biomolecular motors has been achieved5,6,7,8, the design and construction of novel biomolecular motors remains a challenge. Here we show that naturally occurring protein building blocks from different cytoskeletal systems can be combined to create a new series of biomolecular motors. We show that the hybrid motors—combinations of a motor core derived from the microtubule-based dynein motor and non-motor actin-binding proteins—robustly drive the sliding movement of an actin filament. Furthermore, the direction of actin movement can be reversed by simply changing the geometric arrangement of these building blocks. Our synthetic strategy provides an approach to fabricating biomolecular machines that work along artificial tracks at nanoscale dimensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and performance of novel actin-based motors.
Figure 2: Directionality and velocity of hybrid motors.
Figure 3: Nucleotide-dependent filament-binding activity of hybrid motors.
Figure 4: Construction of reversed VinT–Dyn motor.

Similar content being viewed by others

References

  1. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  Google Scholar 

  2. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton 1st edn (Sinauer Associates, 2001).

  3. van den Heuvel, M. G. & Dekker, C. Motor proteins at work for nanotechnology. Science 317, 333–336 (2007).

    Article  CAS  Google Scholar 

  4. Diez, S., Helenius, J. H. & Howard, J. in Protein Science Encyclopedia 185–199 (Wiley, 2008).

  5. Tsiavaliaris, G., Fujita-Becker, S. & Manstein, D. J. Molecular engineering of a backwards-moving myosin motor. Nature 427, 558–561 (2004).

    Article  CAS  Google Scholar 

  6. Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nat. Mater. 1, 173–177 (2002).

    Article  CAS  Google Scholar 

  7. Nomura, A., Uyeda, T. Q., Yumoto, N. & Tatsu, Y. Photo-control of kinesin-microtubule motility using caged peptides derived from the kinesin C-terminus domain. Chem. Commun. 3588–3590 (2006).

  8. Chen, L., Nakamura, M., Schindler, T. D., Parker, D. & Bryant, Z. Engineering controllable bidirectional molecular motors based on myosin. Nat. Nanotech. 7, 252–256 (2012).

    Article  CAS  Google Scholar 

  9. Hackney, D. D. The kinetic cycles of myosin, kinesin, and dynein. Annu. Rev. Physiol. 58, 731–750 (1996).

    Article  CAS  Google Scholar 

  10. Howard, J. Protein power strokes. Curr. Biol. 16, R517–R519 (2006).

    Article  CAS  Google Scholar 

  11. Kon, T., Mogami, T., Ohkura, R., Nishiura, M. & Sutoh, K. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nat. Struct. Mol. Biol. 12, 513–519 (2005).

    Article  CAS  Google Scholar 

  12. Roberts, A. J., Kon, T., Knight, P. J., Sutoh, K. & Burgess, S. A. Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 14, 713–726 (2013).

    Article  CAS  Google Scholar 

  13. Vallee, R. B., Williams, J. C., Varma, D. & Barnhart, L. E. Dynein: an ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58, 189–200 (2004).

    Article  CAS  Google Scholar 

  14. Gibbons, I. R. Cilia and flagella of eukaryotes. J. Cell Biol. 91, 107s–124s (1981).

    Article  CAS  Google Scholar 

  15. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    Article  CAS  Google Scholar 

  16. Roberts, A. J. et al. AAA+ Ring and linker swing mechanism in the dynein motor. Cell 136, 485–495 (2009).

    Article  CAS  Google Scholar 

  17. Kon, T. et al. The 2.8 Å crystal structure of the dynein motor domain. Nature 484, 345–350 (2012).

    Article  CAS  Google Scholar 

  18. Schmidt, H., Zalyte, R., Urnavicius, L. & Carter, A. P. Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518, 435–438 (2015).

    Article  CAS  Google Scholar 

  19. Carter, A. P. et al. Structure and functional role of dynein's microtubule-binding domain. Science 322, 1691–1695 (2008).

    Article  CAS  Google Scholar 

  20. Redwine, W. B. et al. Structural basis for microtubule binding and release by dynein. Science 337, 1532–1536 (2012).

    Article  CAS  Google Scholar 

  21. Shima, T., Kon, T., Imamula, K., Ohkura, R. & Sutoh, K. Two modes of microtubule sliding driven by cytoplasmic dynein. Proc. Natl Acad. Sci. USA 103, 17736–17740 (2006).

    Article  CAS  Google Scholar 

  22. Gibbons, I. R. et al. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J. Biol. Chem. 280, 23960–23965 (2005).

    Article  CAS  Google Scholar 

  23. Kon, T. et al. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat. Struct. Mol. Biol. 16, 325–333 (2009).

    Article  CAS  Google Scholar 

  24. Nishikawa, Y., Inatomi, M., Iwasaki, H. & Kurisu, G. Structural change in the dynein stalk region associated with two different affinities for the microtubule. J. Mol. Biol. 428, 1886–1896 (2015).

    Article  Google Scholar 

  25. Burgess, S. A. & Knight, P. J. Is the dynein motor a winch? Curr. Opin. Struct. Biol. 14, 138–146 (2004).

    Article  CAS  Google Scholar 

  26. Kim, L. Y. et al. The structural basis of actin organization by vinculin and metavinculin. J. Mol. Biol. 428, 10–25 (2015).

    Article  Google Scholar 

  27. Vale, R. D. & Oosawa, F. Protein motors and Maxwell's demons: does mechanochemical transduction involve a thermal ratchet? Adv. Biophys. 26, 97–134 (1990).

    Article  CAS  Google Scholar 

  28. Cleary, F. B. et al. Tension on the linker gates the ATP-dependent release of dynein from microtubules. Nat. Commun. 5, 4587 (2014).

    Article  CAS  Google Scholar 

  29. Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    Article  CAS  Google Scholar 

  30. Bath, J. & Turberfield, A. J. DNA nanomachines. Nat. Nanotech. 2, 275–284 (2007).

    Article  CAS  Google Scholar 

  31. Reck-Peterson, S. L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006).

    Article  CAS  Google Scholar 

  32. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    Article  CAS  Google Scholar 

  33. Uchimura, S. et al. A flipped ion pair at the dynein-microtubule interface is critical for dynein motility and ATPase activation. J. Cell Biol. 208, 211–222 (2015).

    Article  CAS  Google Scholar 

  34. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within Green fluorescent proteins. Proc. Natl Acad. Sci. USA 96, 11241–11246 (1999).

    Article  CAS  Google Scholar 

  35. Martin, A., Baker, T. A. & Sauer, R. T. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature 437, 1115–1120 (2005).

    Article  CAS  Google Scholar 

  36. Torisawa, T. et al. Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein. Nat. Cell Biol. 16, 1118–1124 (2014).

    Article  CAS  Google Scholar 

  37. Spudich, J. A. & Watt, S. The regulation of rabbit skeletal muscle contraction. I: biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971).

    CAS  Google Scholar 

  38. Herm-Gotz, A. et al. Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO J. 21, 2149–2158 (2002).

    Article  CAS  Google Scholar 

  39. Perry, S. V. Myosin adenosine triphosphatase. Meth. Enzymol. 2, 582–588 (1955).

    Article  CAS  Google Scholar 

  40. Hyman, A. A. Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J. Cell Sci. Suppl. 14, 125–127 (1991).

    Article  CAS  Google Scholar 

  41. Suzuki, N., Miyata, H., Ishiwata, S. & Kinosita, K. Jr. Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay. Biophys. J. 70, 401–408 (1996).

    Article  CAS  Google Scholar 

  42. Furuta, K. et al. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors. Proc. Natl Acad. Sci. USA 110, 501–506 (2013).

    Article  CAS  Google Scholar 

  43. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using µManager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank Y. Watari and K. Yamamoto (NICT, Kobe, Japan) for technical assistance, C. Mori, K. Okamasa, Y. Nagahama and N. Fukuta (NICT, Kobe, Japan) for DNA sequencing and K. Miura (EMBL, Germany) for the Temporal-Color Code ImageJ plugin. This work was supported by a Grant-in-Aid for Young Scientists B from the Ministry of Education, Culture, Sports, Science and Technology, Japan (grant number 22770164 to K.F.) a Grant-in-Aid for Scientific Research C from the Japan Society for the Promotion of Science (grant number 26440089 to K.O.) and the Takeda Science Foundation (to K.O.).

Author information

Authors and Affiliations

Authors

Contributions

A.F. and K.F. conceived and designed the project. A.F., M.A., M.Y. and K.F. conducted the experiments. All authors contributed to writing the paper.

Corresponding author

Correspondence to Ken'ya Furuta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2317 kb)

Supplementary information

Supplementary Movie 1 (MP4 7420 kb)

Supplementary information

Supplementary Movie 2 (MP4 146 kb)

Supplementary information

Supplementary Movie 3 (MP4 316 kb)

Supplementary information

Supplementary Movie 4 (MP4 436 kb)

Supplementary information

Supplementary Movie 5 (MP4 213 kb)

Supplementary information

Supplementary Movie 6 (MP4 651 kb)

Supplementary information

Supplementary Movie 7 (MP4 1431 kb)

Supplementary information

Supplementary Movie 8 (MP4 3803 kb)

Supplementary information

Supplementary Movie 9 (MP4 826 kb)

Supplementary information

Supplementary Movie 10 (MP4 3418 kb)

Supplementary information

Supplementary Movie 11 (MP4 3258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furuta, A., Amino, M., Yoshio, M. et al. Creating biomolecular motors based on dynein and actin-binding proteins. Nature Nanotech 12, 233–237 (2017). https://doi.org/10.1038/nnano.2016.238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.238

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research