Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain

Abstract

The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume1,2. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication3 and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep4, development5 and aging6 and is probably altered in neuropsychiatric and degenerative diseases7, as inferred from electron microscopy8,9 and macroscopic biophysical investigations2,10. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule tracking of luminescent SWCNTs in live ECS brain tissue.
Figure 2: SWCNT diffusion properties in the ECS.
Figure 3: Super-resolution imaging of ECS morphology and local ECS viscosity maps.
Figure 4: Local modifications of the ECS in chemically altered brains.

Similar content being viewed by others

References

  1. Cserr, H. F. et al. Extracellular volume decreases while cell volume is maintained by ion uptake in rat-brain during acute hypernatremia. J. Physiol. 442, 277–295 (1991).

    Article  CAS  Google Scholar 

  2. Syková, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008).

    Article  Google Scholar 

  3. Dityatev, A., Schachner, M. & Sonderegger, P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11, 735–746 (2010).

    Article  CAS  Google Scholar 

  4. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    Article  CAS  Google Scholar 

  5. Lehmenkühler, A., Sykova, E., Svoboda, J., Zilles, K. & Nicholson, C. Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 55, 339–351 (1993).

    Article  Google Scholar 

  6. Metzler-Baddeley, C., Jones, D. K., Belaroussi, B., Aggleton, J. P. & O'Sullivan, M. J. Frontotemporal connections in episodic memory and aging: a diffusion MRI tractography study. J. Neurosci. 31, 13236–13245 (2011).

    Article  CAS  Google Scholar 

  7. Berezin, V., Walmod, P. S., Filippov, M. & Dityatev, A. Targeting of ECM molecules and their metabolizing enzymes and receptors for the treatment of CNS diseases. Prog. Brain Res. 214, 353–388 (2014).

    Article  Google Scholar 

  8. Ohno, N., Terada, N., Saitoh, S. & Ohno, S. Extracellular space in mouse cerebellar cortex revealed by in vivo cryotechnique. J. Comp. Neurol. 505, 292–301 (2007).

    Article  Google Scholar 

  9. Korogod, N., Petersen, C. C. & Knott, G. W. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife 4, e05793 (2015).

    Article  Google Scholar 

  10. Verkman, A. S. Diffusion in the extracellular space in brain and tumors. Phys. Biol. 10, 045003 (2013).

    Article  CAS  Google Scholar 

  11. Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotech. 4, 773–780 (2009).

    Article  CAS  Google Scholar 

  12. Heller, D. A. et al. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat. Nanotech. 4, 114–120 (2009).

    Article  CAS  Google Scholar 

  13. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  14. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    Article  CAS  Google Scholar 

  15. Reuel, N. F., Dupont, A., Thouvenin, O., Lamb, D. C. & Strano, M. S. Three-dimensional tracking of carbon nanotubes within living cells. ACS Nano 6, 5420–5428 (2012).

    Article  CAS  Google Scholar 

  16. Fakhri, N. et al. High-resolution mapping of intracellular fluctuations using carbon nanotubes. Science 344, 1031–1035 (2014).

    Article  CAS  Google Scholar 

  17. Wang, Y., Bahng, J. H., Che, Q., Han, J. & Kotov, N. A. Anomalously fast diffusion of targeted carbon nanotubes in cellular spheroids. ACS Nano 9, 8231–8238 (2015).

    Article  CAS  Google Scholar 

  18. Jena, P. V. et al. Photoluminescent carbon nanotubes interrogate the permeability of multicellular tumor spheroids. Carbon 97, 99–109 (2016).

    Article  CAS  Google Scholar 

  19. Fakhri, N., MacKintosh, F. C., Lounis, B., Cognet, L. & Pasquali, M. Brownian motion of stiff filaments in a crowded environment. Science 330, 1804–1807 (2010).

    Article  CAS  Google Scholar 

  20. Varela, J. A. et al. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices. Nat. Commun. 7, 10947 (2016).

    Article  CAS  Google Scholar 

  21. Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotech. 2, 47–52 (2007).

    Article  CAS  Google Scholar 

  22. Gao, Z., Varela, J. A., Groc, L., Lounis, B. & Cognet, L. Toward the suppression of cellular toxicity from single-walled carbon nanotubes. Biomater. Sci. 4, 230–244 (2016).

    Article  CAS  Google Scholar 

  23. Santos, S. M. et al. All-optical trion generation in single-walled carbon nanotubes. Phys. Rev. Lett. 107, 187401 (2011).

    Article  Google Scholar 

  24. Thorne, R. G. & Nicholson, C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl Acad. Sci. USA 103, 5567–5572 (2006).

    Article  CAS  Google Scholar 

  25. Han, Y. et al. Brownian motion of an ellipsoid. Science 314, 626–630 (2006).

    Article  CAS  Google Scholar 

  26. Schutz, G. J., Schindler, H. & Schmidt, T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73, 1073–1080 (1997).

    Article  CAS  Google Scholar 

  27. Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665 (2003).

    Article  CAS  Google Scholar 

  28. Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy): effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993).

    Article  CAS  Google Scholar 

  29. Godin, A. G., Lounis, B. & Cognet, L. Super-resolution microscopy approaches for live cell imaging. Biophys. J. 107, 1777–1784 (2014).

    Article  CAS  Google Scholar 

  30. Kochlamazashvili, G. et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels. Neuron 67, 116–128 (2010).

    Article  CAS  Google Scholar 

  31. Stoppini, L., Buchs, P. A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J Neurosci. Methods 37, 173–182 (1991).

    Article  CAS  Google Scholar 

  32. Haas, K., Sin, W. C., Javaherian, A., Li, Z. & Cline, H. T. Single-cell electroporation for gene transfer in vivo. Neuron 29, 583–591 (2001).

    Article  CAS  Google Scholar 

  33. Oudjedi, L., Parra-Vasquez, A. N., Godin, A. G., Cognet, L. & Lounis, B. Metrological investigation of the (6,5) carbon nanotube absorption cross section. J. Phys. Chem. Lett. 4, 1460–1464 (2013).

    Article  CAS  Google Scholar 

  34. Meijering, E. et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58, 167–176 (2004).

    Article  CAS  Google Scholar 

  35. Han, Y., Alsayed, A., Nobili, M. & Yodh, A. G. Quasi-two-dimensional diffusion of single ellipsoids: aspect ratio and confinement effects. Phys. Rev. E 80, 011403 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Bézard, M. Blanchard-Desce, B. Bontempi and P. Bon for helpful discussions. We thank the Bordeaux Imaging Center (service unit of the CNRS-INSERM and Univ. Bordeaux). We thank J.P. Salvetat for experimental help with AFM imaging and J. Ferreira for support with histological experiments. This work was supported by CNRS, the Agence Nationale de la Recherche (ANR-14-OHRI-0001-01), IdEx Bordeaux (ANR-10-IDEX-03-02), Labex Brain (ANR-10-LABX-43), Conseil Régional d'Aquitaine (2011-1603009) and the France-BioImaging national infrastructure (ANR-10-INBS-04-01). A.G.G. acknowledges financial support from the Fondation pour la Recherche Médicale and the Fonds Recherche du Québec–Nature et Technologies. J.A.V. acknowledges funding from Marie Curie Individual Fellowship 326442.

Author information

Authors and Affiliations

Authors

Contributions

A.G.G., J.A.V., Z.G. and J.P.D. performed the experiments. A.G.G., N.D., B.L. and L.C. performed the analysis. B.L., L.G. and L.C. co-supervised the study. L.G. and L.C. designed the study. All authors discussed the results and co-wrote the manuscript.

Corresponding authors

Correspondence to Laurent Groc or Laurent Cognet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1852 kb)

Supplementary Movie 1

Supplementary Movie 1 (MP4 3474 kb)

Supplementary Movie 2

Supplementary Movie 2 (MP4 11051 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godin, A., Varela, J., Gao, Z. et al. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nature Nanotech 12, 238–243 (2017). https://doi.org/10.1038/nnano.2016.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing