Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids

Abstract

We have addressed the possible epigenetic contribution to heterosis using epigenetic inbred lines (epiRILs) with varying levels and distributions of DNA methylation. One line consistently displayed parent-of-origin heterosis for growth-related traits. Genome-wide transcription profiling followed by a candidate gene approach revealed 33 genes with altered regulation in crosses of this line that could contribute to the observed heterosis. Although none of the candidate genes could explain hybrid vigour, we detected intriguing, hybrid-specific transcriptional regulation of the RPP5 gene, encoding a growth suppressor. RPP5 displayed intermediate transcript levels in heterotic hybrids; surprisingly however, with global loss of fitness of their F2 progeny, we observed striking under-representation of the hybrid-like intermediate levels. Thus, in addition to genetic factors contributing to heterosis, our results strongly suggest that epigenetic diversity and epigenetic regulation of transcription play a role in hybrid vigour and inbreeding depression, and also in the absence of parental genetic diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterosis of epi31 test crosses.
Figure 2: Developmental kinetics during vegetative growth.
Figure 3: Genome-wide transcription profiles of the heterotic epi31 × WT hybrids and candidate gene approach.
Figure 4: Model of heterosis and inbreeding depression of epigenetic hybrids.

Similar content being viewed by others

References

  1. Hochholdinger, F. & Hoecker, N. Towards the molecular basis of heterosis. Trends Plant Sci. 12, 428–432 (2007).

    Article  Google Scholar 

  2. Darwin, C. R. The Effects of Cross and Self-fertilization in the Vegetable Kingdom (John Murray, 1876).

    Book  Google Scholar 

  3. East, E. M. Heterosis. Genetics 21, 375–397 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Birchler, J. A., Yao, H., Chudalayandi, S., Vaiman, D. & Veitia, R. A. Heterosis. Plant Cell Online 22, 2105–2112 (2010).

    Article  CAS  Google Scholar 

  5. Schnable, P. S. & Springer, N. M. Progress toward understanding heterosis in crop plants. Annu. Rev. Plant Biol. 64, 71–88 (2013).

    Article  CAS  Google Scholar 

  6. Ni, Z. et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457, 327–331 (2009).

    Article  CAS  Google Scholar 

  7. He, G., He, H. & Deng, X. W. Epigenetic variations in plant hybrids and their potential roles in heterosis. J. Genet. Genomics 40, 205–210 (2013).

    Article  CAS  Google Scholar 

  8. Baranwal, V. K., Mikkilineni, V., Zehr, U. B., Tyagi, A. K. & Kapoor, S. Heterosis: emerging ideas about hybrid vigour. J. Exp. Bot. 63, 6309–6314 (2012).

    Article  CAS  Google Scholar 

  9. Groszmann, M. et al. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl Acad. Sci. USA 108, 2617–2622 (2011).

    Article  CAS  Google Scholar 

  10. Shen, H. et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24, 875–892 (2012).

    Article  CAS  Google Scholar 

  11. Greaves, I. K. et al. Trans chromosomal methylation in Arabidopsis hybrids. Proc. Natl Acad. Sci. USA 109, 3570–3575 (2012).

    Article  CAS  Google Scholar 

  12. Chodavarapu, R. K. et al. Transcriptome and methylome interactions in rice hybrids. Proc. Natl Acad. Sci. USA 109, 12040–12045 (2012).

    Article  CAS  Google Scholar 

  13. Shivaprasad, P. V., Dunn, R. M., Santos, B. A., Bassett, A. & Baulcombe, D. C. Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J. 31, 257–266 (2012).

    Article  CAS  Google Scholar 

  14. Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).

    Article  CAS  Google Scholar 

  15. Saze, H., Scheid, O. M. & Paszkowski, J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nature Genet. 34, 65–69 (2003).

    Article  CAS  Google Scholar 

  16. Koornneef, M., Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C. J. & Peeters, A. J. Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148, 885–892 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Granier, C. et al. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 169, 623–635 (2006).

    Article  Google Scholar 

  18. Boyes, D. C. et al. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499–1510 (2001).

    Article  CAS  Google Scholar 

  19. Elwell, A. L., Gronwall, D. S., Miller, N. D., Spalding, E. P. & Brooks, T. L. D. Separating parental environment from seed size effects on next generation growth and development in Arabidopsis. Plant Cell Environ. 34, 291–301 (2011).

    Article  Google Scholar 

  20. Gonzalez, N. et al. Increased leaf size: different means to an end. Plant Physiol. 153, 1261–1279 (2010).

    Article  CAS  Google Scholar 

  21. Stokes, T. L. & Richards, E. J. Induced instability of two Arabidopsis constitutive pathogen-response alleles. Proc. Natl Acad. Sci. USA 99, 7792–7796 (2002).

    Article  CAS  Google Scholar 

  22. Stokes, T. L., Kunkel, B. N. & Richards, E. J. Epigenetic variation in Arabidopsis disease resistance. Genes Dev. 16, 171–182 (2002).

    Article  CAS  Google Scholar 

  23. Yi, H. & Richards, E. J. Phenotypic instability of Arabidopsis alleles affecting a disease resistance gene cluster. BMC Plant Biol. 8, 36–46 (2008).

    Article  Google Scholar 

  24. Yi, H. & Richards, E. J. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell. 19, 2929–2939 (2007).

    Article  CAS  Google Scholar 

  25. Yi, H. & Richards, E. J. Gene duplication and hypermutation of the pathogen resistance gene SNC1 in the Arabidopsis bal variant. Genetics 183, 1227–1234 (2009).

    Article  CAS  Google Scholar 

  26. Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).

    Article  CAS  Google Scholar 

  27. Auger, D. L., Ream, T. S. & Birchler, J. A. A test for a metastable epigenetic component of heterosis using haploid induction in maize. Theor. Appl. Genet. 108, 1017–1023 (2004).

    Article  CAS  Google Scholar 

  28. Barth, S., Busimi, A. K., Utz, H. F. & Melchinger, A. E. Heterosis for biomass yield and related traits in five hybrids of Arabidopsis thaliana L. Heynh. Heredity 91, 36–42 (2003).

    Article  CAS  Google Scholar 

  29. Meyer, R. C., Torjek, O., Becher, M. & Altmann, T. Heterosis of biomass production in Arabidopsis. Establishment during early development 1. Plant Physiol. 134, 1813–1823 (2004).

    Article  CAS  Google Scholar 

  30. Mirouze, M. et al. Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461, 427–430 (2009).

    Article  CAS  Google Scholar 

  31. Ng, D. W.K. et al. A role for CHH methylation in the parent-of-origin effect on altered circadian rhythms and biomass heterosis in Arabidopsis intraspecific hybrids. Plant Cell 1, 1–12 (2014).

    Google Scholar 

  32. Meyer, R. C. et al. Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids. Plant J. 71, 669–683 (2012).

    Article  CAS  Google Scholar 

  33. Hauben, M. et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc. Natl Acad. Sci. USA 106, 20109–20114 (2009).

    Article  CAS  Google Scholar 

  34. Chen, Z. J. Genomic and epigenetic insights into the molecular bases of heterosis. Nature Rev. Genet. 14, 471–482 (2013).

    Article  CAS  Google Scholar 

  35. Song, G.S. et al. Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol. Plant 3, 1012–1025 (2010).

    Article  CAS  Google Scholar 

  36. Calarco, J. P. et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151, 194–205 (2012).

    Article  CAS  Google Scholar 

  37. Kanno, T. et al. A structural-maintenance-of-chromosomes hinge domain-containing protein is required for RNA-directed DNA methylation. Nature Genet. 40, 670–675 (2008).

    Article  CAS  Google Scholar 

  38. Yokthongwattana, C. et al. MOM1 and Pol-IV/V interactions regulate the intensity and specificity of transcriptional gene silencing. EMBO J. 29, 340–351 (2010).

    Article  CAS  Google Scholar 

  39. Sanchez, D. H. & Paszkowski, J. Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene. PLoS Genet. 10, e1004806 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all members of the Paszkowski and the LEPSE laboratory, as well as Patrick Descombes for expression profiling assistance and P. King for editing the manuscript. This work was supported by EVOBREED ERC grant 322621 and Gatsby Fellowship AT3273/GLE.

Author information

Authors and Affiliations

Authors

Contributions

M.D., J.R. and J.P. designed the research, with the help of C.G. for the design of the phenotyping experimentations. M.D. performed the experiments, with the help of A.B., C.B. and C.G. for the phenotyping, G.T. for the statistical tests on phenotyping, and J.R. and E.B. for genome-wide annotation, expression and in silico DNA methylation analyses. M.D. and J.P. wrote the manuscript.

Corresponding author

Correspondence to Jerzy Paszkowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dapp, M., Reinders, J., Bédiée, A. et al. Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids. Nature Plants 1, 15092 (2015). https://doi.org/10.1038/nplants.2015.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing