Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic architecture and evolution of the S locus supergene in Primula vulgaris

Subjects

Abstract

Darwin's studies on heterostyly in Primula described two floral morphs, pin and thrum, with reciprocal anther and stigma heights that promote insect-mediated cross-pollination. This key innovation evolved independently in several angiosperm families. Subsequent studies on heterostyly in Primula contributed to the foundation of modern genetic theory and the neo-Darwinian synthesis. The established genetic model for Primula heterostyly involves a diallelic S locus comprising several genes, with rare recombination events that result in self-fertile homostyle flowers with anthers and stigma at the same height. Here we reveal the S locus supergene as a tightly linked cluster of thrum-specific genes that are absent in pins. We show that thrums are hemizygous not heterozygous for the S locus, which suggests that homostyles do not arise by recombination between S locus haplotypes as previously proposed. Duplication of a floral homeotic gene 51.7 million years (Myr) ago, followed by its neofunctionalization, created the current S locus assemblage which led to floral heteromorphy in Primula. Our findings provide new insights into the structure, function and evolution of this archetypal supergene.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P. vulgaris floral phenotypes and genotypes.
Figure 2: Organization of S locus haplotypes.
Figure 3: Linkage of the S haplotype to the thrum phenotype.
Figure 4: Expression and genomic organization of S locus genes.
Figure 5: Phylogenetic analysis and the date of duplication of GLOT from GLO.

Similar content being viewed by others

References

  1. Barrett, S. C. H. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274–284 (2002).

    Article  CAS  Google Scholar 

  2. Richards, A. J. Primula 2nd edn (Batsford, 2002).

    Google Scholar 

  3. Darwin, C. R. On the two forms or dimorphic condition in the species of Primula, and on their remarkable sexual relations. J. Proc. Linn. Soc. Bot. 6, 77–96 (1862).

    Google Scholar 

  4. Gregory, R. P., De Winton, D. & Bateson, M. A. Genetics of Primula sinensis. J. Genet. 13, 219–253 (1923).

    Article  Google Scholar 

  5. Bateson, W. & Gregory, R. P. On the inheritance of heterostylism in Primula. Proc. R. Soc. Lond. B 76, 581–586 (1905).

    Article  Google Scholar 

  6. Bridges, C. B. The chromosome hypothesis of linkage applied to cases in sweetpeas and Primula. Am. Nat. 48, 524–534 (1914).

    Article  Google Scholar 

  7. Ernst, A. Weitere untersuchungen zur phänanalyse zum fertilitätsproblem und zur genetik heterostyler primeln. II. Primula hortensis. Arch. Julius Klaus Stift. Vererbungsforsch. Sozialanthropol. Rassenhyg. 11, 1–280 (1936).

    Google Scholar 

  8. Ernst, A. Heterostylie-Forschung versuche zur genetischen analyse eines organisations und ‘Anpassungs’ merkmales. Z. Induk. Abstamm. Vererbungsl. 71, 156–230 (1936).

    Google Scholar 

  9. De Winton, D. & Haldane, J. B. S. The genetics of Primula sinensis. III. Linkage in the diploid. J. Genet. 31, 67–100 (1935).

    Article  Google Scholar 

  10. Darlington, C. D. Meiosis in diploid and tetraploid Primula sinensis. J. Genet. 24, 65–95 (1931).

    Article  Google Scholar 

  11. Mather, K. The genetical architecture of heterostyly in Primula sinensis. Evolution 4, 340–352 (1950).

    Article  Google Scholar 

  12. Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, R288–R294 (2014).

    Article  CAS  Google Scholar 

  13. Darwin, C. R. The Different Forms of Flowers on Plants of the Same Species (John Murray, 1877).

    Book  Google Scholar 

  14. Dodd, M. E., Silvertown, J. & Chase, M. W. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53, 732–744 (1999).

    Article  Google Scholar 

  15. Webster, M. A. & Gilmartin, P. M. Analysis of late stage flower development in primula vulgaris reveals novel differences in cell morphology and temporal aspects of floral heteromorphy. New Phytol. 171, 591–603 (2006).

    PubMed  Google Scholar 

  16. Shivanna, K. R., Heslop-Harrison, J. & Heslop-Harrison, Y. Heterostyly in primula. 2. Sites of pollen inhibition, and effects of pistil constituents on compatible and incompatible pollen tube growth. Protoplasma 107, 319–337 (1981).

    Article  Google Scholar 

  17. Richards, A. J. & Ibrahim, H. B. The breeding system in primula veris L .II. pollen-Tube growth and seed-Set. New Phytol. 90, 305–314 (1982).

    Article  Google Scholar 

  18. Lewis, D. Comparative incompatibility in angiosperms and fungi. Adv. Genet. 6, 235–285 (1954).

    Article  CAS  Google Scholar 

  19. Dowrick, V. P. J. Heterostyly and homostyly in Primula obconica. Heredity 10, 219–236 (1956).

    Article  Google Scholar 

  20. Lloyd, D. G. & Webb, C. J. in Evolution and Function of Heterostyly (ed. Barrett, S. C. H. ) 151–175 (Springer Verlag, 1992).

    Book  Google Scholar 

  21. Charlesworth, D. & Charlesworth, B. Model for the evolution of distyly. Am. Nat. 114, 467–498 (1979).

    Article  Google Scholar 

  22. Bodmer, W. F. The genetics of homostyly in populations of Primula vulgaris. Phil. Trans. R. Soc. Lond. B 242, 517–549 (1960).

    Article  Google Scholar 

  23. Fisher, R. A. A theoretical system of selection for homostyle. Primula Sankhya. 9, 325–342 (1949).

    Google Scholar 

  24. Piper, J. G., Charlesworth, B. & Charlesworth, D. A high-rate of self-fertilization and increased seed fertility of homostyle primroses. Nature. 310, 50–51 (1984).

    Article  Google Scholar 

  25. Crosby, J. L. High proportions of homostyle plants in populations of Primula vulgaris. Nature. 145, 672–673 (1940).

    Article  Google Scholar 

  26. Crosby, J. L. Selection of an unfavourable gene complex. Evol. Ecol. Res. 3, 212–230 (1949).

    CAS  Google Scholar 

  27. Webster, M. A. & Gilmartin, P. M. A comparison of early floral ontogeny in wild-type and floral homeotic mutant phenotypes of Primula. Planta 216, 903–917 (2003).

    CAS  PubMed  Google Scholar 

  28. McCubbin, A. G., Lee, C. & Hetrick, A. Identification of genes showing differential expression between morphs in developing flowers of Primula vulgaris. Sex. Plant Reprod. 19, 63–72 (2006).

    Article  CAS  Google Scholar 

  29. Li, J., Webster, M. A., Furuya, M. & Gilmartin, P. M. Identification and characterization of pin and thrum alleles of two genes that co-segregate with the Primula S locus. Plant J. 51, 18–31 (2007).

    Article  CAS  Google Scholar 

  30. Manfield, I. W. et al. Molecular characterization of DNA sequences from the Primula vulgaris S locus. J. Exp. Bot. 56, 1177–1188 (2005).

    Article  CAS  Google Scholar 

  31. Cocker, J. et al. Oakleaf: an S locus-linked mutation of Primula vulgaris that affects leaf and flower development. New Phytol. 208, 149–161 (2015).

    Article  CAS  Google Scholar 

  32. Li, J. et al. Hose in Hose, an S locus-linked mutant of Primula vulgaris is caused by an unstable mutation at the Globosa locus. Proc. Natl Acad. Sci. USA 107, 5664–5668 (2010).

    Article  CAS  Google Scholar 

  33. Li, J. et al. The S locus-linked Primula homeotic mutant sepaloid shows characteristics of a B-function mutant but does not result from mutation in a B-function gene. Plant J. 56, 1–12 (2008).

    Article  CAS  Google Scholar 

  34. Yoshida, Y. et al. QTL analysis of heterostyly in Primula sieboldii and its application for morph identification in wild populations. Ann. Bot. 108, 133–142 (2011).

    Article  Google Scholar 

  35. Li, J. et al. Integration of genetic and physical maps of the Primula vulgaris S locus and localization by chromosome in situ hybridisation. New Phytol. 208, 137–148 (2015).

    Article  CAS  Google Scholar 

  36. Nowak, M. D. et al. The draft genome of Primula veris yields insight into the molecular basis of heterostyly. Genome Biol. 16, 16 (2015).

    Article  Google Scholar 

  37. Verhoef, N. et al. Brassinosteroid biosynthesis and signalling in Petunia hybrida. J. Exp. Bot. 64, 2435–2448 (2013).

    Article  CAS  Google Scholar 

  38. Turk, E. M. et al. CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol. 133, 1643–1653 (2003).

    Article  CAS  Google Scholar 

  39. Abbasi, N., Park, Y.-I. & Choi, S.-B. Pumilio Puf domain RNA-binding proteins in Arabidopsis. Plant Signal. Behav. 6, 364–368 (2011).

    Article  CAS  Google Scholar 

  40. Kim, H. J., Chiang, Y.-H., Kieber, J. J. & Schaller, G. E. SCFKMD controls cytokinin signaling by regulating the degradation of type-B response regulators. Proc. Natl Acad. Sci. USA 110, 10028–10033 (2013).

    Article  CAS  Google Scholar 

  41. Webster, M. A. & Grant, C. J. The inheritance of calyx morph variants in Primula vulgaris (Huds). Heredity 64, 121–124 (1990).

    Article  Google Scholar 

  42. Viaene, T. et al. Pistillata-duplications as a mode for floral diversification in (Basal) asterids. Mol. Biol. Evol. 26, 2627–2645 (2009).

    Article  CAS  Google Scholar 

  43. Xia, X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol. Biol. Evol. 30, 1720–1728 (2013).

    Article  CAS  Google Scholar 

  44. Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207, 437–453 (2015).

    Article  Google Scholar 

  45. Bell, C. D., Soltis, D. E. & Soltis, P. S. The age and diversification of the angiosperms re-revisited. Am. J. Bot. 97, 1296–1303 (2010).

    Article  Google Scholar 

  46. Mast, A. R. et al. Phylogenetic relationships in Primula L. and related genera (Primulaceae) based on noncoding chloroplast DNA. Int. J. Plant Sci. 162, 1381–1400 (2001).

    Article  CAS  Google Scholar 

  47. Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–206 (2011).

    Article  CAS  Google Scholar 

  48. Thomas, J. W. et al. The chromosomal polymorphism linked to variation in social behavior in the white-throated sparrow (Zonotrichia albicollis) is a complex rearrangement and suppressor of recombination. Genetics 179, 1455–1468 (2008).

    Article  CAS  Google Scholar 

  49. Wang, J. et al. A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493, 664–668 (2013).

    Article  CAS  Google Scholar 

  50. Turgeon, B. G. & Yoder, O. C. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet. Biol. 31, 1–5 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Lappage, M. Hughes and P. Wells for horticultural support; colleagues at TGAC for Illumina sequencing; A. Thanki for TGAC Browser support; O. Kent for P. elatior GLO and GLOT sequences; Norfolk Wildlife Trust, Suffolk Wildlife Trust and Norfolk County Council for permission to sample P. veris, P. elatior and P. vulgaris respectively; M. Gage, B. Davies and D. Bowles for comments on the manuscript; W. Wang for advice on k-means analysis; BBSRC for funding via grant BB/H019278/2, and prior awards G11027 and P11021; The Gatsby Foundation for early stage funding; University of Leeds, Durham University and University of East Anglia for support to P.M.G. over several years of the project. CvO was funded by the Earth & Life Systems Alliance (ELSA). P.M.G.'s laboratory is hosted at the John Innes Centre under the UEA-JIC Norwich Research Park collaboration.

Author information

Authors and Affiliations

Authors

Contributions

J.L. contributed to project design, performed all molecular analyses, generated the S locus assembly, manually annotated the S locus gene structures and undertook data analysis. J.M.C. carried out bioinformatic analyses, including automated annotation of the S locus region, undertook in silico gene expression and k-means clustering analyses, assembled genome sequences and library scaffolds, generated the molecular phylogeny, undertook recombination analysis of the S locus flanking regions and contributed to project design. J.W. assembled genome sequences and library scaffolds, contributed to genome annotation and generated the automated gene model predictions across the S locus, aligned sequencing reads to the S locus assembly and contributed to project design. M.A.W. contributed the inbred long homostyle line, other genetic resources and classical genetics, identified the short homostyle mutant and generated the three-point cross used to demonstrate linkage. M.M. and C.v.O. contributed to the molecular phylogeny construction, evolutionary data analysis and recombination analysis. S.A., D.S. and M.C. contributed to the genome sequencing strategy, assembly and annotation that underpins this project. P.M.G. conceived, designed and directed the project, contributed to data analysis, prepared the figures and drafted the manuscript, with revision input from C.v.O.; all authors contributed to editing the manuscript.

Corresponding author

Correspondence to Philip M. Gilmartin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary References, Supplementary Figures 1–4, Supplementary Tables 1–6, Supplementary Sequence Analyses 1–3. (PDF 1701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Cocker, J., Wright, J. et al. Genetic architecture and evolution of the S locus supergene in Primula vulgaris. Nature Plants 2, 16188 (2016). https://doi.org/10.1038/nplants.2016.188

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing