Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Passive induction of experimental allergic encephalomyelitis

This article has been updated

Abstract

Experimental allergic encephalomyelitis (EAE) is a widely used animal model of the human demyelinating disease multiple sclerosis. EAE is initiated by immunization with myelin antigens in adjuvant or by adoptive transfer of myelin-specific T cells, resulting in inflammatory infiltrates and demyelination in the central nervous system. Induction of EAE in rodents typically results in ascending flaccid paralysis with inflammation primarily targeting the spinal cord. This protocol describes passive induction of EAE by adoptive transfer of T cells isolated from mice primed with myelin antigens into naïve mice. The advantages of using this method versus active induction of EAE are discussed.

Note: In the version of this article initially published online, part of a sentence on p. 1957, in Step 11B(ii), should have been deleted. The sentence should read: “If skewing toward TH17 cells, IL-23 (10 ng/ml) can be included in the media to promote T cell survival.” This error has been corrected in all versions of the article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Clinical course and pathological manifestation of classic EAE.

Similar content being viewed by others

Change history

  • 07 December 2006

    In the version of this article initially published online, part of a sentence on p. 1957, in Step 11B(ii), should have been deleted. The sentence should read: “If skewing toward TH17 cells, IL-23 (10 ng/ml) can be included in the media to promote T cell survival.” This error has been corrected in all versions of the article.

References

  1. Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 23, 683–747 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Zamvil, S.S. & Steinman, L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 8, 579–621 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Kuchroo, V.K. et al. T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu. Rev. Immunol. 20, 101–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Stromnes, I.M. & Goverman, J.M. Active induction of Experimental Allergic Encephalomyelitis. Nat. Protocols doi: 10.1038/nprot.2006.285 (2006).

  5. Storch, M.K. et al. Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol. 8, 681–694 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Tsunoda, I., Kuang, L.Q., Theil, D.J. & Fujinami, R.S. Antibody association with a novel model for primary progressive multiple sclerosis: induction of relapsing-remitting and progressive forms of EAE in H2s mouse strains. Brain Pathol. 10, 402–418 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Muller, D.M., Pender, M.P. & Greer, J.M. A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol. (Berl.) 100, 174–182 (2000).

    Article  CAS  Google Scholar 

  8. Huseby, E.S. et al. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J. Exp. Med. 194, 669–676 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krakowski, M. & Owens, T. Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 26, 1641–1646 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Willenborg, D.O., Fordham, S., Bernard, C.C., Cowden, W.B. & Ramshaw, I.A. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  PubMed  Google Scholar 

  11. Abromson-Leeman, S. et al. T-cell properties determine disease site, clinical presentation, and cellular pathology of experimental autoimmune encephalomyelitis. Am. J. Pathol. 165, 1519–1533 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wensky, A.K. et al. IFN-gamma determines distinct clinical outcomes in autoimmune encephalomyelitis. J. Immunol. 174, 1416–1423 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Wensky, A., Marcondes, M.C. & Lafaille, J.J. The role of IFN-gamma in the production of Th2 subpopulations: implications for variable Th2-mediated pathologies in autoimmunity. J. Immunol. 167, 3074–3081 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sriram, S. & Steiner, I. Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann. Neurol. 58, 939–945 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Steinman, L. & Zamvil, S.S. How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann. Neurol. 60, 12–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Friese, M.A. et al. The value of animal models for drug development in multiple sclerosis. Brain 129, 1940–1952 (2006).

    Article  PubMed  Google Scholar 

  17. Goverman, J. et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72, 551–560 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Lafaille, J.J., Nagashima, K., Katsuki, M. & Tonegawa, S. High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78, 399–408 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, G.Y. et al. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3, 407–415 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Waldner, H., Whitters, M.J., Sobel, R.A., Collins, M. & Kuchroo, V.K. Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor 97, 3412–3417 (2000).

  21. Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou, S.R., Moscarello, M.A. & Whitaker, J.N. The effects of citrullination or variable amino-terminus acylation on the encephalitogenicity of human myelin basic protein in the PL/J mouse. J. Neuroimmunol. 62, 147–152 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Nicholas, A.P., Sambandam, T., Echols, J.D. & Barnum, S.R. Expression of citrullinated proteins in murine experimental autoimmune encephalomyelitis. J. Comp. Neurol. 486, 254–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Raijmakers, R. et al. Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis. J. Comp. Neurol. 486, 243–253 (2005).

    Article  PubMed  Google Scholar 

  25. Lassmann, H. & Ransohoff, R.M. The CD4-Th1 model for multiple sclerosis: a crucial re-appraisal. Trends Immunol. 25, 132–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Goverman, J., Perchellet, A. & Huseby, E.S. The role of CD8(+) T cells in multiple sclerosis and its animal models. Curr. Drug Targets Inflamm. Allergy 4, 239–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Friese, M.A. & Fugger, L. Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128, 1747–1763 (2005).

    Article  PubMed  Google Scholar 

  28. McDole, J., Johnson, A.J. & Pirko, I. The role of CD8+ T-cells in lesion formation and axonal dysfunction in multiple sclerosis. Neurol. Res. 28, 256–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Huseby, E.S., Ohlen, C. & Goverman, J. Cutting edge: myelin basic protein-specific cytotoxic T cell tolerance is maintained in vivo by a single dominant epitope in H-2k mice. J. Immunol. 163, 1115–1118 (1999).

    CAS  PubMed  Google Scholar 

  30. Paterson, P.Y. Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J. Exp. Med. 111, 119–133 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ben-Nun, A., Wekerle, H. & Cohen, I.R. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol. 11, 195–199 (1981).

    Article  CAS  PubMed  Google Scholar 

  32. Zamvil, S. et al. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317, 355–358 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. McDevitt, H.O., Perry, R. & Steinman, L.A. Monoclonal anti-Ia antibody therapy in animal models of autoimmune disease. Ciba Found. Symp. 129, 184–193 (1987).

    CAS  PubMed  Google Scholar 

  34. Flugel, A. et al. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14, 547–560 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Merrill, J.E. et al. Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc. Natl. Acad. Sci. USA 89, 574–578 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Renno, T., Krakowski, M., Piccirillo, C., Lin, J.Y. & Owens, T. TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J. Immunol. 154, 944–953 (1995).

    CAS  PubMed  Google Scholar 

  37. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sutton, C., Brereton, C., Keogh, B., Mills, K.H. & Lavelle, E.C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Teuscher, C. et al. Gender, age, and season at immunization uniquely influence the genetic control of susceptibility to histopathological lesions and clinical signs of experimental allergic encephalomyelitis: implications for the genetics of multiple sclerosis. Am. J. Pathol. 165, 1593–1602 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Martenson, R.E., Deibler, G.E. & Kies, M.W. Microheterogeneity of guinea pig myelin basic protein. J. Biol. Chem. 244, 4261–4267 (1969).

    CAS  PubMed  Google Scholar 

  45. Amor, S. et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J. Immunol. 153, 4349–4356 (1994).

    CAS  PubMed  Google Scholar 

  46. Elliott, E.A. et al. Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of myelin basic protein and proteolipid protein. J. Clin. Invest. 98, 1602–1612 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seamons, A., Perchellet, A. & Goverman, J. Immune tolerance to myelin proteins. Immunol. Res. 28, 201–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Donovan, J. & Brown, P. Anesthesia. In Current Protocols in Immunology Vol. 1 (eds. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W.) 1.4.1–1.4.5 (John Wiley & Sons, Hoboken, 1994).

    Google Scholar 

  49. Hedenqvist, P. & Hellebrekers, L.J. Laboratory animal analgesia, anesthesia, and euthanasia. in Handbook of Laboratory Animal Science: Essential Principles and Practices 2nd edn. Vol. 1 (eds. Hau, J. & van Hoosier, G.L. Jr.) 413–455 (CRC Press, Boca Raton, 2003).

    Google Scholar 

  50. Otto, K. Anesthesia, analgesia and euthanasia. in The Laboratory Mouse (eds. Hedrich, H. & Bullock, G.) 555–569 (Elsevier Academic Press, Amsterdam, 2004).

    Chapter  Google Scholar 

  51. Cooper, H.M. & Patterson, Y. Production of antibodies. in Current Protocols in Immunol. Vol. 1 (eds. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W.) 2.4.1–2.4.9 (John Wiley & Sons, Hoboken, 1994).

    Google Scholar 

  52. Fillmore, P.D. et al. Genetic analysis of the influence of neuroantigen-complete Freund's adjuvant emulsion structures on the sexual dimorphism and susceptibility to experimental allergic encephalomyelitis. Am. J. Pathol. 163, 1623–1632 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maatta, J.A., Nygardas, P.T. & Hinkkanen, A.E. Enhancement of experimental autoimmune encephalomyelitis severity by ultrasound emulsification of antigen/adjuvant in distinct strains of mice. Scand. J. Immunol. 51, 87–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Van den Broeck, W., Derore, A. & Simoens, P. Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J. Immunol. Methods 312, 12–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Barzaga-Gilbert, M.E., Skeen, M.J., Chou, C.H. & Fritz, R.B. Suppressive activity of long-term myelin basic protein-specific SJL T cell lines. J. Neuroimmunol. 23, 241–247 (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Tokuchi, F. et al. Lymphokine production by encephalitogenic and non-encephalitogenic T-cell clones reactive to the same antigenic determinant. J. Neuroimmunol. 30, 71–79 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Munoz, J.J. & Mackay, I.R. Adoptive transfer of experimental allergic encephalomyelitis in mice with the aid of pertussigen from Bordetella pertussis. Cell Immunol. 86, 541–545 (1984).

    Article  CAS  PubMed  Google Scholar 

  58. Matejuk, A., Hopke, C., Vandenbark, A.A., Hurn, P.D. & Offner, H. Middle-age male mice have increased severity of experimental autoimmune encephalomyelitis and are unresponsive to testosterone therapy. J. Immunol. 174, 2387–2395 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Begolka, W.S., Vanderlugt, C.L., Rahbe, S.M. & Miller, S.D. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J. Immunol. 161, 4437–4446 (1998).

    CAS  PubMed  Google Scholar 

  60. Brabb, T. et al. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J. Exp. Med. 192, 871–880 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hofstetter, H.H. et al. Does the frequency and avidity spectrum of the neuroantigen-specific T cells in the blood mirror the autoimmune process in the central nervous system of mice undergoing experimental allergic encephalomyelitis? J. Immunol. 174, 4598–4605 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Lehmann, P.V., Sercarz, E.E., Forsthuber, T., Dayan, C.M. & Gammon, G. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol. Today 14, 203–208 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Tuohy, V.K., Fritz, R.B. & Ben-Nun, A. Self-determinants in autoimmune demyelinating disease: changes in T-cell response specificity. Curr. Opin. Immunol. 6, 887–891 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Miller, S.D. & Eagar, T.N. Functional role of epitope spreading in the chronic pathogenesis of autoimmune and virus-induced demyelinating diseases. Adv. Exp. Med. Biol. 490, 99–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, X. et al. Pertussis toxin as an adjuvant suppresses the number and function of CD4+CD25+ T regulatory cells. Eur. J. Immunol. 36, 671–680 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cassan, C. et al. Pertussis toxin reduces the number of splenic Foxp3+ regulatory T cells. J. Immunol. 177, 1552–1560 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Hofstetter, H.H., Shive, C.L. & Forsthuber, T.G. Pertussis toxin modulates the immune response to neuroantigens injected in incomplete Freund's adjuvant: induction of Th1 cells and experimental autoimmune encephalomyelitis in the presence of high frequencies of Th2 cells. J. Immunol. 169, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Kruisbeek, A. Isolation of mouse mononuclear cells. in Short Protocols in Immunology: A Compendium of Methods from Current Protocols in Immunology (eds. Coligan, J.E., Bierer, B.E., Margulies, D.H., Shevach, E.M. & Strober, W.) 2-3–2-5 (John Wiley & Sons, Hoboken, 2005).

    Google Scholar 

  69. In the version of this article initially published online, part of a sentence on p. 1957, in Step 11B(ii), should have been deleted. The sentence should read: “If skewing toward TH17 cells, IL-23 (10 ng/ml) can be included in the media to promote T cell survival.” This error has been corrected in all versions of the article.

Download references

Acknowledgements

We acknowledge Dr. Thea Brabb and Hannah S. Simkins for a critical reading of the manuscript, and Hannah S. Simkins for help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan M Goverman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stromnes, I., Goverman, J. Passive induction of experimental allergic encephalomyelitis. Nat Protoc 1, 1952–1960 (2006). https://doi.org/10.1038/nprot.2006.284

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.284

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing