Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis of TOAC spin-labeled proteins and reconstitution in lipid membranes

Abstract

A procedure is described for the synthetic incorporation into membrane proteins of the non-natural amino acid TOAC (2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxylic acid), which is coupled rigidly to the α-carbon, providing direct detection of peptide backbone dynamics by electron paramagnetic resonance (EPR). Also included is a protocol for the functional reconstitution of the spin-labeled protein in lipid vesicles. This protocol can be completed in 17 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural model of AFA-PLB, based on NMR1.
Figure 2: Typical EPR spectrum of resin-bound (Fmoc-PAL-PEG-PS) TOAC spin-labeled protein.
Figure 3: Spectra of sequential synthetic intermediates in lipid bilayers.
Figure 4: At strong acid pH, Tempo (a) disproportionates to oxoammonium cation (b) and TempOH (c).
Figure 5: EPR spectra of a TOAC spin-labeled protein reconstituted in lipid bilayers.
Figure 6: Determination of [Spin]/[PLB].

Similar content being viewed by others

References

  1. Zamoon, J., Mascioni, A., Thomas, D.D. & Veglia, G. NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys. J. 85, 2589–2598 (2003).

    Article  CAS  Google Scholar 

  2. Lindemann, J.P., Jones, L.R., Hathaway, D.R., Henry, B.G. & Watanabe, A.M. β-Adrenergic stimulation of phospholamban phosphorylation and Ca2+- ATPase activity in guinea pig ventricles. J. Biol. Chem. 258, 464–471 (1983).

    CAS  PubMed  Google Scholar 

  3. MacLennan, D.H. & Kranias, E.G. Phospholamban: a crucial regulator of cardiac contractility. Nature Rev. Mol. Cell Biol. 4, 566–577 (2003).

    Article  CAS  Google Scholar 

  4. Haghighi, K. et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Invest. 111, 869–876 (2003).

    Article  CAS  Google Scholar 

  5. Minamisawa, S. et al. Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 304, 1–4 (2003).

    Article  CAS  Google Scholar 

  6. Sande, J.B. et al. Reduced level of serine(16) phosphorylated phospholamban in the failing rat myocardium: a major contributor to reduced SERCA2 activity. Cardiovasc. Res. 53, 382–391 (2002).

    Article  CAS  Google Scholar 

  7. Schmidt, A.G., Edes, I. & Kranias, E.G. Phospholamban: a promising therapeutic target in heart failure? Cardiovasc. Drugs Ther. 15, 387–396 (2001).

    Article  CAS  Google Scholar 

  8. Minamisawa, S. et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99, 313–322 (1999).

    Article  CAS  Google Scholar 

  9. Karim, C.B., Kirby, T.L., Zhang, Z., Nesmelov, Y. & Thomas, D.D. Phospholamban structural dynamics in lipid bilayers probed by a spin label rigidly coupled to the peptide backbone. Proc. Natl. Acad. Sci. USA 101, 14437–14442 (2004).

    Article  CAS  Google Scholar 

  10. Karim, C.B., Marquardt, C.G., Stamm, J.D., Barany, G. & Thomas, D.D. Synthetic null-cysteine phospholamban analogue and the corresponding transmembrane domain inhibit the Ca-ATPase. Biochemistry 39, 10892–10897 (2000).

    Article  CAS  Google Scholar 

  11. Karim, C.B. et al. Role of cysteine residues in structural stability and function of a transmembrane helix bundle. J. Biol. Chem. 26, 26 (2001).

    Google Scholar 

  12. Karim, C.B., Zhang, Z., Howard, E.C., Torgersen, K.D. & Thomas, D.D. Phosphorylation-dependent conformational switch in spin-labeled phospholamban bound to SERCA. J. Mol. Biol. 358, 1032–1040 (2006).

    Article  CAS  Google Scholar 

  13. Muir, T.W. & Kent, S.B. The chemical synthesis of proteins. Curr. Opin. Biotechnol. 4, 420–427 (1993).

    Article  CAS  Google Scholar 

  14. Coin, I. et al. Depsipeptide methodology for solid-phase peptide synthesis: circumventing side reactions and development of an automated technique via depsidipeptide units. J. Org. Chem. 71, 6171–6177 (2006).

    Article  CAS  Google Scholar 

  15. Sarin, V.K., Kent, S.B., Tam, J.P. & Merrifield, R.B. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal. Biochem. 117, 147–157 (1981).

    Article  CAS  Google Scholar 

  16. Zamoon, J., Nitu, F., Karim, C., Thomas, D.D. & Veglia, G. Mapping the interaction surface of a membrane protein: unveiling the conformational switch of phospholamban in calcium pump regulation. Proc. Natl. Acad. Sci. USA 102, 4747–4752 (2005).

    Article  CAS  Google Scholar 

  17. Metcalfe, E.E., Traaseth, N.J. & Veglia, G. Serine 16 phosphorylation induces an order-to-disorder transition in monomeric phospholamban. Biochemistry 44, 4386–4396 (2005).

    Article  CAS  Google Scholar 

  18. Robia, S.L., Flohr, N.C. & Thomas, D.D. Phospholamban pentamer quaternary conformation determined by in-gel fluorescence anisotropy. Biochemistry 44, 4302–4311 (2005).

    Article  CAS  Google Scholar 

  19. Mueller, B., Karim, C.B., Negrashov, I.V., Kutchai, H. & Thomas, D.D. Direct detection of phospholamban and sarcoplasmic reticulum Ca-ATPase interaction in membranes using fluorescence resonance energy transfer. Biochemistry 43, 8754–8765 (2004).

    Article  CAS  Google Scholar 

  20. Tatulian, S.A. et al. The inhibitory action of phospholamban involves stabilization of alpha-helices within the Ca-ATPase. Biochemistry 41, 741–751 (2002).

    Article  CAS  Google Scholar 

  21. Paterlini, M.G. & Thomas, D.D. The alpha-helical propensity of the cytoplasmic domain of phospholamban: a molecular dynamics simulation of the effect of phosphorylation and mutation. Biophys. J. 88, 3243–3251 (2005).

    Article  CAS  Google Scholar 

  22. Lockwood, N.A. et al. Structure and function of integral membrane protein domains resolved by peptide-amphiphiles: application to phospholamban. Biopolymers 69, 283–292 (2003).

    Article  CAS  Google Scholar 

  23. Kirby, T.L., Karim, C.B. & Thomas, D.D. Electron paramagnetic resonance reveals a large-scale conformational change in the cytoplasmic domain of phospholamban upon binding to the sarcoplasmic reticulum Ca-ATPase. Biochemistry 43, 5842–5852 (2004).

    Article  CAS  Google Scholar 

  24. Negash, S. et al. Phospholamban remains associated with the Ca2+- and Mg2+-dependent ATPase following phosphorylation by cAMP-dependent protein kinase. Biochem. J. 351, 195–205 (2000).

    Article  CAS  Google Scholar 

  25. Chen, B. & Bigelow, D.J. Phosphorylation induces a conformational transition near the lipid-water interface of phospholamban reconstituted with the Ca-ATPase. Biochemistry 41, 13965–13972 (2002).

    Article  CAS  Google Scholar 

  26. Hubbell, W.L., Cafiso, D.S. & Altenbach, C. Identifying conformational changes with site-directed spin labeling. Nature Struct. Biol. 7, 735–739 (2000).

    Article  CAS  Google Scholar 

  27. Monaco, V. et al. Determining the occurrence of a 3(10)-helix and an alpha-helix in two different segments of a lipopeptaibol antibiotic using TOAC, a nitroxide spin-labeled C(alpha)-tetrasubstituted alpha-aminoacid. Bioorg. Med. Chem. 7, 119–131 (1999).

    Article  CAS  Google Scholar 

  28. Monaco, V. et al. Orientation and immersion depth of a helical lipopeptaibol in membranes using TOAC as an ESR probe. Biopolymers 50, 239–253 (1999).

    Article  CAS  Google Scholar 

  29. Toniolo, C. et al. Synthesis and conformational studies of peptides containing TOAC, a spin-labelled C alpha, alpha-disubstituted glycine. J. Pept. Sci. 1, 45–57 (1995).

    Article  CAS  Google Scholar 

  30. Toniolo, C., Crisma, M. & Formaggio, F. TOAC, a nitroxide spin-labeled, achiral C-tetrasubstituted-amino acid, is an excellent tool in material science and biochemistry. Pept. Sci. 47, 153–158 (1998).

    Article  CAS  Google Scholar 

  31. Atherton, E. & Sheppard, R.C. Solid Phase Peptide Synthesis. A Practical Approach (IRL Press, Oxford, 1989).

    Google Scholar 

  32. Martin, L., Ivancich, A., Vita, C., Formaggio, F. & Toniolo, C. Solid-phase peptide synthesis of peptides containing the spin-labeled 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC). Pept. Res. 58, 424–432 (2001).

    Article  CAS  Google Scholar 

  33. Hanson, P. et al. Distinguishing helix conformations in alanine-rich peptides using the unnatural amino acid TOAC and electron spin resonance. J. Am. Chem. Soc. 118, 271–272 (1996).

    Article  CAS  Google Scholar 

  34. Marchetto, R., Schreier, S. & Nakaie, C.R. A novel spin-labeled amino acid derivative for use in peptide chemistry: (9-fluorenylmethyloxycarbonyl)2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid. J. Am. Chem. Soc. 115, 11042–11043 (1993).

    Article  CAS  Google Scholar 

  35. McNulty, J.C., Thompson, D.A., Carrasco, M.R. & Millhauser, G.L. Dap-SL: a new site-directed nitroxide spin labeling approach for determining structure and motions in synthesized peptides and proteins. FEBS Lett. 529, 243–248 (2002).

    Article  CAS  Google Scholar 

  36. Bui, T.T. et al. TOAC: a useful C-alpha-tetrasubstituted-amino acid for peptide conformational analysis by CD spectroscopy in the visible region. J. Chem. Soc., Perkin Trans. 2, 1043–1046 (2000).

    Article  Google Scholar 

  37. Hanson, P. et al. Electron spin resonance and structural analysis of water soluble, alanine-rich peptides incorporating TOAC. Mol. Physics 95, 957–966 (1998).

    CAS  Google Scholar 

  38. Nakaie, C.R., Goissis, G., Schreier, S. & Paiva, A.C. pH dependence of EPR spectra of nitroxides containing ionizable groups. Braz. J. Med. Biol. Res. 14, 173–180 (1981).

    CAS  PubMed  Google Scholar 

  39. Nakaie, C.R., Schreier, S. & Paiva, A.C. Synthesis and properties of spin-labeled angiotensin derivatives. Biochim. Biophys. Acta 742, 63–71 (1983).

    Article  CAS  Google Scholar 

  40. Nakaie, C.R. et al. Synthesis and pharmacological properties of TOAC-labeled angiotensin and bradykinin analogs. Peptides 23, 65–70 (2002).

    Article  CAS  Google Scholar 

  41. MirAfzali, Z., Leipprandt, J.R., McCracken, J.L. & DeWitt, D.L. Fast, efficient reconstitution of the cyclooxygenases into proteoliposomes. Arch. Biochem. Biophys. 443, 60–65 (2005).

    Article  CAS  Google Scholar 

  42. Zhang, Z., Remmer, H.A., Thomas, D.D. & Karim, C.B. Backbone dynamics determined by electron paramagnetic resonance to optimize solid-phase peptide synthesis of TOAC-labeled phospholamban. Biopolymers 88, 29–35 (2006).

    Article  Google Scholar 

  43. Carpino, L.A. 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J. Am. Chem. Soc. 115, 4397–4398 (1993).

    Article  CAS  Google Scholar 

  44. Chan, W.C. & White, P.D. Fmoc Solid Phase Peptide Synthesis 1–341 (Oxford University Press, Oxford, 2000).

    Google Scholar 

  45. Wade, J.D., Bedford, J., Sheppard, R.C. & Tregear, G.W. DBU as an N alpha-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solid-phase peptide synthesis. Pept. Res. 4, 194–199 (1991).

    CAS  PubMed  Google Scholar 

  46. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  47. Hartree, E.F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48, 422–427 (1972).

    Article  CAS  Google Scholar 

  48. Dulley, J.R. & Grieve, P.A. A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal. Biochem. 64, 136–141 (1975).

    Article  CAS  Google Scholar 

  49. Sheldon, R.A. & Arends, I.W.C.E. Organocatalytic oxidations mediated by nitroxyl radicals. Adv. Synth. Catal. 346, 1051–1071 (2004).

    Article  CAS  Google Scholar 

  50. Tominaga, M. et al. Fmoc-POAC: [(9-fluorenylmethyloxycarbonyl)-2,2,5,5-tetramethylpyrrolidine-N-oxyl-3-amino-4-carboxylic acid]: a novel protected spin labeled beta-amino acid for peptide and protein chemistry. Chem. Pharm. Bull. (Tokyo) 49, 1027–1029 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Henriette Remmer at the Department of Biological Chemistry, University of Michigan, for advice about experimental details. This work was supported by a grant from the National Institutes of Health to D.D.T. (GM27906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine B Karim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, C., Zhang, Z. & Thomas, D. Synthesis of TOAC spin-labeled proteins and reconstitution in lipid membranes. Nat Protoc 2, 42–49 (2007). https://doi.org/10.1038/nprot.2007.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing