Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes

Abstract

Iterative saturation mutagenesis (ISM) is a new and efficient method for the directed evolution of functional enzymes. It reduces the necessary molecular biological work and the screening effort drastically. It is based on a Cartesian view of the protein structure, performing iterative cycles of saturation mutagenesis at rationally chosen sites in an enzyme, a given site being composed of one, two or three amino acid positions. The basis for choosing these sites depends on the nature of the catalytic property to be improved, e.g., enantioselectivity, substrate acceptance or thermostability. In the case of thermostability, sites showing highest B-factors (available from X-ray data) are chosen. The pronounced increase in thermostability of the lipase from Bacillus subtilis (Lip A) as a result of applying ISM is illustrated here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of iterative saturation mutagenesis involving (as an example) four randomization sites A, B, C and D: confined protein sequence space for evolutionary enzyme optimization (redundancy in some cases is expected).
Figure 2
Figure 3: Enhancing the thermostability of the lipase from Bacillus subtilis (Lip A) by iterative saturation mutagenesis.
Figure 4: Generalization of CASTing.
Figure 5: Accelrys Discovery Studio Visualizer main windows.
Figure 6
Figure 7: Introduction to CASTER.
Figure 8
Figure 9: Thermostability of purified wild-type (WT) and variants X and XI of Bacillus subtilis lipase A (Lip A) as displayed by the residual activity curves.

Similar content being viewed by others

References

  1. Arnold, F.H. & Georgiou, G. (eds.) Directed Enzyme Evolution: Screening and Selection Methods (Humana Press, Totowa, New Jersey, 2003).

  2. Powell, K.A. et al. Directed evolution and biocatalysis. Angew. Chem. 113, 4068–4080 (2001); Angew. Chem. Int. Ed. Engl. 40, 3948–3959 (2001).

    Article  Google Scholar 

  3. Brakmann, S. & Schwienhorst, A. (eds.) Evolutionary Methods in Biotechnology: Clever Tricks for Directed Evolution (Wiley-VCH, Weinheim, Germany, 2004).

  4. Taylor, S.V., Kast, P. & Hilvert, D. Investigating and engineering enzymes by genetic selection. Angew. Chem. 113, 3408–3436 (2001); Angew. Chem. Int. Ed. Engl. 40, 3310–3335 (2001).

    Article  Google Scholar 

  5. Reetz, M.T. Directed evolution of enantioselective enzymes as catalysts for organic synthesis. In Advances in Catalysis (eds. Gates, B.C. & Knözinger, H.) 1–69 (Elsevier, San Diego, 2006).

    Google Scholar 

  6. Svendsen, A. (ed.) Enzyme Functionality: Design, Engineering, and Screening (Marcel Dekker, New York, 2004).

  7. Fersht, A. (ed.) Structure and Mechanism in Protein Science (W. H. Freeman, New York, 1999).

  8. Leung, D.W., Chen, E. & Goeddel, D.V. A Method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique (Philadelphia) 1, 11–15 (1989).

    Google Scholar 

  9. Zhao, H. & Arnold, F.H. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng. 12, 47–53 (1999).

    Article  CAS  Google Scholar 

  10. Reetz, M.T., Zonta, A., Schimossek, K., Liebeton, K. & Jaeger,, K.-E. Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew. Chem. 109, 2961–2963 (1997); Angew. Chem. Int. Ed. Engl. 36, 2830–2832.

    Article  Google Scholar 

  11. Eggert, T., Reetz, M.T. & Jaeger,, K.-E. Directed evolution by random mutagenesis: A critical evaluation. In Enzyme Functionality: Design, Engineering, and Screening (Svendsen, A. ed.) 375–390 (Marcel Dekker, New York, 2004).

    Google Scholar 

  12. Wong, T.S., Roccatano, D., Zacharias, M. & Schwaneberg, U. A statistical analysis of random mutagenesis methods used for directed protein evolution. J. Mol. Biol. 355, 858–871 (2006).

    Article  CAS  Google Scholar 

  13. Stemmer, W.P.C. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Article  CAS  Google Scholar 

  14. Wells, J.A., Vasser, M. & Powers, D.B. Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene 34, 315–323 (1985).

    Article  CAS  Google Scholar 

  15. Black, M.E., Newcomb, T.G., Wilson, H.-M.P. & Loeb, L.A. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc. Natl. Acad. Sci. USA 93, 3525–3529 (1996).

    Article  CAS  Google Scholar 

  16. Chica, R.A., Doucet, N. & Pelletier, J.N. Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr. Opin. Biotechnol. 16, 378–384 (2005).

    Article  CAS  Google Scholar 

  17. Park, S. et al. Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations. Chem. Biol. 12, 45–54 (2005).

    Article  CAS  Google Scholar 

  18. Reetz, M.T., Wilensek, S., Zha, D. & Jaeger,, K.-E. Directed evolution of an enantioselective enzyme through combinatorial multiple cassette mutagenesis. Angew. Chem. 113, 3701–3703 (2001); Angew. Chem. Int. Ed. 40, 3589–3591.

    Article  Google Scholar 

  19. Geddie, M.L. & Matsumura, I. Rapid evolution of beta-glucuronidase specificity by saturation mutagenesis of an active site loop. J. Biol. Chem. 279, 26462–26468 (2004).

    Article  CAS  Google Scholar 

  20. Lutz, S. & Patrick, W.M. Novel methods for directed evolution of enzymes: quality, not quantity. Curr. Opin. Biotechnol. 15, 291–297 (2004).

    Article  CAS  Google Scholar 

  21. Parikh, M.R. & Matsumura, I. Site-saturation mutagenesis is more efficient than DNA shuffling for the directed evolution of beta-fucosidase from beta-galactosidase. J. Mol. Biol. 352, 621–628 (2005).

    Article  CAS  Google Scholar 

  22. Reetz, M.T., Wang,, L.-W. & Bocola, M. Directed evolution of enantioselective enzymes: Iterative cycles of CASTing for probing protein-sequence space. Angew. Chem. 118, 1258–1263 Erratum 2556 (2006); Angew. Chem. Int. Ed. Engl. 45, 1236–1241 S Erratum 2494 (2006).

    Article  Google Scholar 

  23. Reetz, M.T., Carballeira, J.D. & Vogel, A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew. Chem. 118, 7909–7915 (2006); Angew. Chem. Int. Ed. Engl. 45, 7745–7751.

    Article  Google Scholar 

  24. Reetz, M.T. et al. Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. Chemistry 12, 6031–6038 (2006).

    Article  CAS  Google Scholar 

  25. Greisman, H.A. & Pabo, C.O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275, 657–661 (1997).

    Article  CAS  Google Scholar 

  26. Rui, L., Cao, L., Chen, W., Reardon, K.F. & Wood, T.K. Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase. J. Biol. Chem. 279, 46810–46817 (2004).

    Article  CAS  Google Scholar 

  27. Oshima, T. Stabilization of proteins by evolutionary molecular engineering techniques. Curr. Opin. Struct. Biol. 4, 623–628 (1994).

    Article  CAS  Google Scholar 

  28. Wintrode, P.L. & Arnold, F.H. Temperature adaptation of enzymes: lessons from laboratory evolution. Adv. Protein Chem. 55, 161–225 (2001).

    Article  Google Scholar 

  29. Ó'Fágáin, C. Enzyme stabilization—recent experimental progress. Enzyme Microb. Technol. 33, 137–149 (2003).

    Article  Google Scholar 

  30. Eijsink, V.G.H., Gåseidnes, S., Borchert, T.V. & van den Burg, B. Directed evolution of enzyme stability. Biomol. Eng. 22, 21–30 (2005).

    Article  CAS  Google Scholar 

  31. Matthews, B.W. Structural and genetic analysis of protein stability. Annu. Rev. Biochem. 62, 139–160 (1993).

    Article  CAS  Google Scholar 

  32. Jaenicke, R. & Böhm, G. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 8, 738–748 (1998).

    Article  CAS  Google Scholar 

  33. Buchner, J. & Kiefhaber, T. Protein Folding Handbook (Wiley-VCH, Weinheim, 2005).

    Book  Google Scholar 

  34. Karplus, P.A. & Schulz, G.E. Prediction of chain flexibility in proteins. Naturwissenschaften 72, 212–213 (1985).

    Article  CAS  Google Scholar 

  35. Vihinen, M. Relationship of protein flexibility of thermostability. Protein Eng. 1, 477–480 (1987).

    Article  CAS  Google Scholar 

  36. Radivojac, P. et al. Protein flexibility and intrinsic disorder. Protein Sci. 13, 71–80 (2004).

    Article  CAS  Google Scholar 

  37. van Pouderoyen, G., Eggert, T., Jaeger, K.-E. & Dijkstra, B.W. The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. J. Mol. Biol. 309, 215–226 (2001).

    Article  CAS  Google Scholar 

  38. Kawasaki, K., Kondo, H., Suzuki, M., Ohgiya, S. & Tsuda, S. Alternative conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.3 Å resolution. Acta Crystallogr. D 58, 1168–1174 (2002).

    Article  Google Scholar 

  39. Dröge, M.J. et al. Directed evolution of Bacillus subtilis lipase A by use of enantiomeric phosphonate inhibitors: crystal structures and phage display selection. Chembiochem 7, 149–157 (2006).

    Article  Google Scholar 

  40. QuikChange site-directed mutagenesis kit. Instruction Manual (Strategene, La Jolla, California, 2003).

  41. Reetz, M.T., Bocola, M., Carballeira, J.D., Zha, D. & Vogel, A. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew. Chem. 117, 4264–4268 (2005); Angew. Chem. Int. Ed. 44, 4192–4196 (2005).

    Article  Google Scholar 

  42. Zou, J. et al. Structure of Aspergillus niger epoxide hydrolase at 108 Å resolution: implications for the structure and function of the mammalian microsomal class of epoxide hydrolases. Structure 8, 111–122 (2000).

    Article  CAS  Google Scholar 

  43. Reetz, M.T. et al. Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Org. Lett. 6, 177–180 (2004).

    Article  CAS  Google Scholar 

  44. Isalan, M. Construction of semi-randomized gene libraries with weighted oligonucleotide synthesis and PCR. Nat. Protoc. 1, 468–475 (2006).

    Article  CAS  Google Scholar 

  45. Reetz, M.T., Peyralans, J.J., Maichele, A., Fu, Y. & Maywald, M. Directed evolution of hybrid enzymes: evolving enantioselectivity of an achiral Rh-complex anchored to a protein. Chem. Commun. (Camb) 4, 4318–4320 (2006).

    Article  Google Scholar 

  46. Bosley, A.D. & Ostermeier, M. Mathematical expressions useful in the construction, description and evaluation of protein libraries. Biomol. Eng. 22, 57–61 (2005).

    Article  CAS  Google Scholar 

  47. Patrick, W.M. & Firth, A.E. Strategies and computational tools for improving randomized protein libraries. Biomol. Eng. 22, 105–112 (2005).

    Article  CAS  Google Scholar 

  48. Funke, S.A. et al. Directed evolution of an enantioselective Bacillus subtilis lipase. Biocatal. Biotransform. 21, 67–73 (2003).

    Article  CAS  Google Scholar 

  49. Dominy, C.N. & Andrews, D.W. Site-directed mutagenesis by inverse PCR. In Methods in Molecular Biology (eds. Casali, N. & Preston, A.) 209–223 (Humana Press, Totowa, New Jersey, 2003).

    Google Scholar 

  50. Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expression Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

  51. Almog, O. et al. Structural basis of thermostability. J. Biol. Chem. 277, 27553–27558 (2002).

    Article  CAS  Google Scholar 

  52. Hecky, J. & Müller, K.M. Structural perturbation and compensation by directed evolution at physiological temperature leads to thermostabilization of beta-lactamase. Biochemistry 44, 12640–12654 (2005).

    Article  CAS  Google Scholar 

  53. Grinberg, A. & Bernhardt, R. Structural and functional consequences of substitutions at the Pro108-Arg14 hydrogen bond in bovine adrenodoxin. Biochem. Biophys. Res. Commun. 249, 933–937 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Fonds der Chemischen Industrie, the German–Israeli Project Cooperation (DIP) and the Deutsche Forschungsgemeinschaft (SPP 1170, RE 359/13-1) for support and the Department of Crystallography of the Max-Planck-Institut für Kohlenforschung for collaborative efforts in developing the computer program B-FITTER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred T Reetz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reetz, M., Carballeira, J. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2, 891–903 (2007). https://doi.org/10.1038/nprot.2007.72

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.72

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing