Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Phenotyping sensory nerve endings in vitro in the mouse

Abstract

This protocol details methods to identify and record from cutaneous primary afferent axons in an isolated mammalian skin–saphenous nerve preparation. The method is based on extracellular recordings of propagated action potentials from single-fiber receptive fields. Cutaneous nerve endings show graded sensitivities to various stimulus modalities that are quantified by adequate and controlled stimulation of the superfused skin with heat, cold, touch, constant punctate pressure or chemicals. Responses recorded from single-fibers are comparable with those obtained in previous in vivo experiments on the same species. We describe the components and the setting-up of the basic equipment of a skin–nerve recording station (few days), the preparation of the skin and the adherent saphenous nerve in the mouse (15–45 min) and the isolation and recording of neurons (approximately 1–3 h per recording). In addition, stimulation techniques, protocols to achieve single-fiber recordings, issues of data acquisition and action potential discrimination are discussed in detail.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental setup: schematic representation of data capture.
Figure 2: Typical view of a recording in Dapsys.
Figure 3: Typical view of an offline analysis in Spike2.
Figure 4: Custom-made gold wire electrodes and glassrods.
Figure 5: The experimental set-up: schematic representation of organ bath and fluid circulation.
Figure 6: Anatomical context of the saphenous nerve (lower leg, adapted from ref. 82).
Figure 7: The surgical procedure in a left leg saphenous nerve preparation.
Figure 8: Views of organ bath and recording chamber.
Figure 9: Sweep showing several C-fiber action potential waveforms.
Figure 10: The marking test.
Figure 11: The parts of an application system for thermostatic control.
Figure 12: Views of organ bath and isolation of a receptive field with a hollow steel cylinder.
Figure 13: Factors that influence the shape of the action potential waveform.
Figure 14: Electrostimulation, marking test and latency analysis.
Figure 15: Troubleshooting a single-fiber recording.
Figure 16: Thermosensitive C-fibers with ongoing activity at 32 °C.
Figure 17: Heat responses of polymodal nociceptors (CMH).
Figure 18: Cold responses of cold nociceptors (CMC).

Similar content being viewed by others

References

  1. Nakai, J. Dissociated dorsal root ganglia in tissue culture. Am. J. Anat. 99, 81–129 (1956).

    Article  CAS  PubMed  Google Scholar 

  2. Murray, M.R. & Kopech, G. A Bibliography of the Research in Tissue Culture (Academic Press, New York, 1953).

  3. Drew, L.J., Wood, J.N. & Cesare, P. Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons. J. Neurosci. 22, RC228 (2002).

    Article  PubMed  Google Scholar 

  4. Cesare, P. & McNaughton, P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl. Acad. Sci. USA 93, 15435–15439 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Reid, G. & Flonta, M.L. Physiology. Cold current in thermoreceptive neurons. Nature 413, 480 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Renganathan, M., Cummins, T.R. & Waxman, S.G. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. 86, 629–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Wood, J.N. et al. Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J. Neurosci. 8, 3208–3220 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Wood, J.N., Boorman, J.P., Okuse, K. & Baker, M.D. Voltage-gated sodium channels and pain pathways. J. Neurobiol. 61, 55–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Bhave, G. & Gereau, R.W. Posttranslational mechanisms of peripheral sensitization. J. Neurobiol. 61, 88–106 (2004).

    Article  PubMed  Google Scholar 

  10. Caterina, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Woodbury, C.J. et al. Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J. Neurosci. 24, 6410–6415 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Zimmermann, K. et al. The TRPV1/2/3 activator 2-aminoethoxydiphenyl borate sensitizes native nociceptive neurons to heat in wildtype but not TRPV1 deficient mice. Neuroscience 135, 1277–1284 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Akopian, A.N., Sivilotti, L. & Wood, J.N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Akopian, A.N. et al. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat. Neurosci. 2, 541–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Zimmermann, K. et al. Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447, 856–859 (2007).

    Article  CAS  Google Scholar 

  16. Matsutomi, T., Nakamoto, C., Zheng, T., Kakimura, J. & Ogata, N. Multiple types of Na(+) currents mediate action potential electrogenesis in small neurons of mouse dorsal root ganglia. Pflügers Arch. 453, 83–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Bessou, P. & Perl, E.R. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J. Neurophysiol. 32, 1025–1043 (1969).

    Article  CAS  PubMed  Google Scholar 

  18. Hensel, H. & Zotterman, Y. The effect of menthol on the thermoreceptors. Acta. Physiol. Scand. 24, 27–34 (1951).

    Article  CAS  PubMed  Google Scholar 

  19. Hensel, H. & Zotterman, Y. The response of mechanoreceptors to thermal stimulation. J. Physiol 115, 16–24 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hensel, H. & Zotterman, Y. The response of the cold receptors to constant cooling. Acta. Physiol. Scand. 22, 96–105 (1951).

    Article  CAS  PubMed  Google Scholar 

  21. Zotterman, Y. Touch, pain and tickling: an electro-physiological investigation on cutaneous sensory nerves. J. Physiol. 95, 1–28 (1939).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hensel, H. & Kenshalo, D.R. Warm receptors in the nasal region of cats. J. Physiol. 204, 99–112 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hensel, H. & Huopaniemi, T. Static and dynamic properties of warm fibres in the infraorbital nerve. Pflügers Arch. 309, 1–10 (1969).

    Article  CAS  PubMed  Google Scholar 

  24. Bessou, P., Burgess, P.R., Perl, E.R. & Taylor, C.B. Dynamic properties of mechanoreceptors with unmyelinated (C) fibers. J. Neurophysiol. 34, 116–131 (1971).

    Article  CAS  PubMed  Google Scholar 

  25. Catton, W.T. Some properties of frog skin mechanoreceptors. J. Physiol. 141, 305–322 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Catton, W.T. Responses of frog skin to local mechanical stimulation. J. Physiol. 137, 81–2P (1957).

    CAS  PubMed  Google Scholar 

  27. Gonzalez, C., Sanchez, J. & Concha, J. Changes in potential difference and short-circuit current produced by electrical stimulation in a nerve–skin preparation of the toad. Biochim. Biophys. Acta. 120, 186–188 (1966).

    Article  CAS  PubMed  Google Scholar 

  28. Diamond, J., Holmes, M. & Nurse, C.A. Are Merkel cell-neurite reciprocal synapses involved in the initiation of tactile responses in salamander skin? J. Physiol. 376, 101–120 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weston, K.M., Foster, R.W. & Weston, A.H. The application of irritant chemicals selectively to the skin of the leech ganglion/body wall preparation. J. Pharmacol. Methods 12, 285–297 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Wedekind, C. Receptive properties of primary afferent fibres from rabbit pleura, in vitro . Somatosens. Mot. Res. 14, 229–236 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Kumazawa, T., Mizumura, K. & Sato, J. Response properties of polymodal receptors studied using in vitro testis superior spermatic nerve preparations of dogs. J. Neurophysiol. 57, 702–711 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Wenk, H.N. & McCleskey, E.W. A novel mouse skeletal muscle–nerve preparation and in vitro model of ischemia. J. Neurosci. Methods 159, 244–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Taguchi, T., Sato, J. & Mizumura, K. Augmented mechanical response of muscle thin-fiber sensory receptors recorded from rat muscle–nerve preparations in vitro after eccentric contraction. J. Neurophysiol. 94, 2822–2831 (2005).

    Article  PubMed  Google Scholar 

  34. Taguchi, T., Matsuda, T., Tamura, R., Sato, J. & Mizumura, K. Muscular mechanical hyperalgesia revealed by behavioural pain test and c-Fos expression in the spinal dorsal horn after eccentric contraction in rats. J. Physiol. 564, 259–268 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lennerz, J.K. et al. Electrophysiological characterisation of vagal afferents relevant to mucosal nociception in the rat upper oesophagus. J. Physiol. 582, 229–242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu, S., Undem, B.J. & Kollarik, M. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus. J. Physiol. 563, 831–842 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Juan, H. & Lembeck, F. Inhibition of the action of bradykinin and acetylcholine on paravascular pain receptors by tetrodotoxin and procaine. Naunyn. Schmiedebergs Arch. Pharmacol. 290, 389–395 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. Juan, H. & Lembeck, F. Action of peptides and other algesic agents on paravascular pain receptors of the isolated perfused rabbit ear. Naunyn. Schmiedebergs Arch. Pharmacol. 283, 151–164 (1974).

    Article  CAS  PubMed  Google Scholar 

  39. Brock, J.A., McLachlan, E.M. & Belmonte, C. Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea-pig cornea. J. Physiol. 512, 211–217 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carr, R.W., Pianova, S. & Brock, J.A. The effects of polarizing current on nerve terminal impulses recorded from polymodal and cold receptors in the guinea-pig cornea. J. Gen. Physiol. 120, 395–405 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carr, R.W. et al. Effects of heating and cooling on nerve terminal impulses recorded from cold-sensitive receptors in the guinea-pig cornea. J. Gen. Physiol. 121, 427–439 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Carr, R.W. & Brock, J.A. Electrophysiology of corneal cold receptor nerve terminals. Adv. Exp. Med. Biol. 508, 19–23 (2002).

    Article  PubMed  Google Scholar 

  43. Madrid, R. et al. Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J. Neurosci. 26, 12512–12525 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Elitt, C.M. et al. Artemin overexpression in skin enhances expression of TRPV1 and TRPA1 in cutaneous sensory neurons and leads to behavioral sensitivity to heat and cold. J. Neurosci. 26, 8578–8587 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Koerber, H.R. & Woodbury, C.J. Comprehensive phenotyping of sensory neurons using an ex vivo somatosensory system. Physiol. Behav. 77, 589–594 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Reeh, P.W. Sensory receptors in mammalian skin in an in vitro preparation. Neurosci. Lett. 66, 141–146 (1986).

    Article  CAS  PubMed  Google Scholar 

  47. Cain, D.M., Khasabov, S.G. & Simone, D.A. Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study. J. Neurophysiol. 85, 1561–1574 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Reeh, P.W. Sensory receptors in a mammalian skin–nerve in vitro preparation. Prog. Brain Res. 74, 271–276 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Mogil, J.S. et al. Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proc. Natl. Acad. Sci. USA 102, 12938–12943 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Bernardini, N. et al. Muscarinic M2 receptors on peripheral nerve endings: a molecular target of antinociception. J. Neurosci. 22, RC229 (2002).

    Article  PubMed  Google Scholar 

  51. Kress, M., Petersen, M. & Reeh, P.W. Methylene blue induces ongoing activity in rat cutaneous primary afferents and depolarization of DRG neurons via a photosensitive mechanism. Naunyn. Schmiedebergs Arch. Pharmacol. 356, 619–625 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Kress, M., Riedl, B. & Reeh, P.W. Effects of oxygen radicals on nociceptive afferents in the rat skin in vitro . Pain 62, 87–94 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Kress, M. & Reeh, P.W. Chemical excitation and sensitization in nociceptors. In Neurobiology of Nociceptors (eds. Belmonte, C. & Cervero, F.) 258–297 (Oxford University, Oxford, 1996).

    Google Scholar 

  54. Petho, G., Derow, A. & Reeh, P.W. Bradykinin-induced nociceptor sensitization to heat is mediated by cyclooxygenase products in isolated rat skin. Eur. J. Neurosci. 14, 210–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Reeh, P.W. & Petho, G. Nociceptor excitation by thermal sensitization—a hypothesis. Prog. Brain Res. 129, 39–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Ringkamp, M. et al. Activated human platelets in plasma excite nociceptors in rat skin, in vitro . Neurosci. Lett. 170, 103–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Steen, K.H., Wegner, H. & Reeh, P.W. The pH response of rat cutaneous nociceptors correlates with extracellular [Na+] and is increased under amiloride. Eur. J. Neurosci. 11, 2783–2792 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Steen, K.H., Steen, A.E. & Reeh, P.W. A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vitro . J. Neurosci. 15, 3982–3989 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Alloui, A. et al. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 25, 2368–2376 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kirchhoff, C., Jung, S., Reeh, P.W. & Handwerker, H.O. Carrageenan inflammation increases bradykinin sensitivity of rat cutaneous nociceptors. Neurosci. Lett. 111, 206–210 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Koltzenburg, M., Kress, M. & Reeh, P.W. The nociceptor sensitization by bradykinin does not depend on sympathetic neurons. Neuroscience 46, 465–473 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Bretag, A.H. Synthetic interstitial fluid for isolated mammalian tissue. Life Sci. 8, 319–329 (1969).

    Article  CAS  PubMed  Google Scholar 

  63. Schlegel, T., Sauer, S.K., Handwerker, H.O. & Reeh, P.W. Responsiveness of C-fiber nociceptors to punctate force-controlled stimuli in isolated rat skin: lack of modulation by inflammatory mediators and flurbiprofen. Neurosci. Lett. 361, 163–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Benedikt, J., Teisinger, J., Vyklicky, L. & Vlachova, V. Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphate. J. Neurochem. 100, 211–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Handwerker, H.O., Anton, F., Kocher, L. & Reeh, P.W. Nociceptor functions in intact skin and in neurogenic or non-neurogenic inflammation. Acta. Physiol. Hung. 69, 333–342 (1987).

    CAS  PubMed  Google Scholar 

  66. Kocher, L., Anton, F., Reeh, P.W. & Handwerker, H.O. The effect of carrageenan-induced inflammation on the sensitivity of unmyelinated skin nociceptors in the rat. Pain 29, 363–373 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Lyfenko, A. et al. The effects of excessive heat on heat-activated membrane currents in cultured dorsal root ganglia neurons from neonatal rat. Pain 95, 207–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Liang, Y.F., Haake, B. & Reeh, P.W. Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action. J. Physiol. 532, 229–239 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bade, H., Braun, H.A. & Hensel, H. Parameters of the static burst discharge of lingual cold receptors in the cat. Pflügers Arch. 382, 1–5 (1979).

    Article  CAS  PubMed  Google Scholar 

  70. Duclaux, R., Schafer, K. & Hensel, H. Response of cold receptors to low skin temperatures in nose of the cat. J. Neurophysiol. 43, 1571–1577 (1980).

    Article  CAS  PubMed  Google Scholar 

  71. Hensel, H. & Schafer, K. Static an dynamic activity of cold receptors in cats after long-term exposure to various temperatures. Pflügers Arch. 392, 291–294 (1982).

    Article  CAS  PubMed  Google Scholar 

  72. Hensel, H. Static and dynamic activity of warm receptors in Boa constrictor. Pflügers Arch. 353, 191–199 (1975).

    Article  CAS  PubMed  Google Scholar 

  73. Kress, M., Koltzenburg, M., Reeh, P.W. & Handwerker, H.O. Responsiveness and functional attributes of electrically localized terminals of cutaneous C-fibers in vivo and in vitro . J. Neurophysiol. 68, 581–595 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. McKemy, D.D., Neuhausser, W.M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Colburn, R.W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Kang, D., Choe, C. & Kim, D. Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J. Physiol. 564, 103–116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pethö, G., Izydorczyk, I. & Reeh, P.W. Effects of TRPV1 receptor antagonists on stimulated iCGRP release from isolated skin of rats and TRPV1 mutant mice. Pain 109, 284–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Koltzenburg, M., Stucky, C.L. & Lewin, G.R. Receptive properties of mouse sensory neurons innervating hairy skin. J. Neurophysiol. 78, 1841–1850 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Forster, C. & Handwerker, H.O. Automatic classification and analysis of microneurographic spike data using a PC/AT. J. Neurosci. Methods 31, 109–118 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Turnquist, B., Leverentz, M. & Swanson, E. Neural spike classification using parallel selection of all algorithm parameters. J. Neurosci. Methods 137, 291–298 (2004).

    Article  PubMed  Google Scholar 

  82. Cook, M.J. The Anatomy of the Laboratory Mouse (Academic Press Inc., New York, 1965).

    Google Scholar 

  83. Mogil, J.S. & Adhikari, S.M. Hot and cold nociception are genetically correlated. J. Neurosci. 19, RC25 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Munns, C., AlQatari, M. & Koltzenburg, M. Many cold sensitive peripheral neurons of the mouse do not express TRPM8 or TRPA1. Cell Calcium 41, 331–342 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Richard Lewis (Department of Molecular Pharmacology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia) and Richard Koerber (Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA) for critical comments on the manuscript. This work was supported by the European Union (EU) and K.Z. was supported by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katharina Zimmermann or Peter W Reeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, K., Hein, A., Hager, U. et al. Phenotyping sensory nerve endings in vitro in the mouse. Nat Protoc 4, 174–196 (2009). https://doi.org/10.1038/nprot.2008.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.223

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing