Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Monitoring detergent-mediated solubilization and reconstitution of lipid membranes by isothermal titration calorimetry

Abstract

The solubilization and reconstitution of biological or liposomal membranes by detergents and biomolecules with detergent-like properties play a major role for technical applications (e.g., the isolation of membrane proteins) and biological phenomena (of, e.g., amphiphilic peptides). It is therefore important to know and understand the amounts of a given detergent required for the onset and completion of membrane solubilization and the detergent–lipid interactions in general. Lipid–detergent systems can form a variety of aggregate structures, which can be grouped into two pseudophases (lamellae and micelles) so that solubilization can be approximately described as a phase transition. Here we present a protocol for establishing the phase diagram and a detailed thermodynamic description of a lipid–detergent system based on isothermal titration calorimetry (ITC). The protocol can also be used to detect additive-induced membrane destabilization, permeabilization, domain formation and lipid-dependent transitions between rod-like and spherical micelles. A minimal protocol consisting of all sample preparation procedures and a single solubilization experiment can be accomplished within 2 days; a more extensive series comprising both solubilization and reconstitution experiments requires several days to a few weeks, depending on the number of titrations performed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram of dilute aqueous C10EO5–POPC mixtures in water at 5 °C.
Figure 2: Solubilization experiment.
Figure 3: Reconstitution experiment.

Similar content being viewed by others

References

  1. le Maire, M., Champeil, P. & Møller, J.V. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta 1508, 86–111 (2000).

    Article  CAS  Google Scholar 

  2. Ollivon, M., Lesieur, S., Grabielle-Madelmont, C. & Paternostre, M. Vesicle reconstitution from lipid–detergent mixed micelles. Biochim. Biophys. Acta 1508, 34–50 (2000).

    Article  CAS  Google Scholar 

  3. Heerklotz, H. Interactions of surfactants with lipid membranes. Q. Rev. Biophys. 41, 205–264 (2008).

    Article  CAS  Google Scholar 

  4. Helenius, A. & Simons, K. Solubilization of membranes by detergents. Biochim. Biophys. Acta 415, 29–79 (1975).

    Article  CAS  Google Scholar 

  5. Lasch, J. Interaction of detergents with lipid vesicles. Biochim. Biophys. Acta 1241, 269–292 (1995).

    Article  Google Scholar 

  6. Lichtenberg, D., Opatowski, E. & Kozlov, M.M. Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. Biochim. Biophys. Acta 1508, 1–19 (2000).

    Article  CAS  Google Scholar 

  7. Lichtenberg, D. Characterization of the solubilization of lipid bilayers by surfactants. Biochim. Biophys. Acta 821, 470–478 (1985).

    Article  CAS  Google Scholar 

  8. Cladera, J., Rigaud, J.L., Villaverde, J. & Dunach, M. Liposome solubilization and membrane protein reconstitution using Chaps and Chapso. Eur. J. Biochem. 243, 798–804 (1997).

    Article  CAS  Google Scholar 

  9. Rigaud, J.L., Pitard, B. & Levy, D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim. Biophys. Acta 1231, 223–246 (1995).

    Article  Google Scholar 

  10. Geertsma, E.R., Mahmood, N.A.B.N., Schuurman-Wolters, G.K. & Poolman, B. Membrane reconstitution of ABC transporters and assays of translocator function. Nat. Protoc. 3, 256–266 (2008).

    Article  CAS  Google Scholar 

  11. Tsamaloukas, A.D., Keller, S. & Heerklotz, H. Uptake and release protocol for assessing membrane binding and permeation by way of isothermal titration calorimetry. Nat. Protoc. 2, 695–704 (2007).

    Article  CAS  Google Scholar 

  12. Heerklotz, H., Lantzsch, G., Binder, H., Klose, G. & Blume, A. Application of isothermal titration calorimetry for detecting lipid membrane solubilization. Chem. Phys. Lett. 235, 517–520 (1995).

    Article  CAS  Google Scholar 

  13. Heerklotz, H., Lantzsch, G., Binder, H., Klose, G. & Blume, A. Thermodynamic characterization of dilute aqueous lipid/detergent mixtures of POPC and C12EO8 by means of isothermal titration calorimetry. J. Phys. Chem. 100, 6764–6774 (1996).

    Article  CAS  Google Scholar 

  14. Heerklotz, H. Membrane stress and permeabilization induced by asymmetric incorporation of compounds. Biophys. J. 81, 184–195 (2001).

    Article  CAS  Google Scholar 

  15. Heerklotz, H.H., Binder, H. & Schmiedel, H. Excess enthalpies of mixing in phospholipid–additive membranes. J. Phys. Chem. B. 102, 5363–5368 (1998).

    Article  CAS  Google Scholar 

  16. Heerklotz, H., Szadkowska, H., Anderson, T. & Seelig, J. The sensitivity of lipid domains to small perturbations demonstrated by the effect of triton. J. Mol. Biol. 329, 793–799 (2003).

    Article  CAS  Google Scholar 

  17. Garidel, P., Hildebrand, A., Knauf, K. & Blume, A. Membranolytic activity of bile salts: influence of biological membrane properties and composition. Molecules 12, 2292–2326 (2007).

    Article  CAS  Google Scholar 

  18. Goñi, F.M. & Alonso, A. Spectroscopic techniques in the study of membrane solubilization, reconstitution and permeabilization by detergents. Biochim. Biophys. Acta 1508, 51–68 (2000).

    Article  Google Scholar 

  19. Edwards, K. & Almgren, M. Solubilization of lecithin vesicles by C12E8 . J. Coll. Interf. Sci. 147, 1–21 (1991).

    Article  CAS  Google Scholar 

  20. Walter, A., Vinson, P.K., Kaplun, A. & Talmon, Y. Intermediate structures in the cholate–phosphatidylcholine vesicle micelle transition. Biophys. J. 60, 1315–1325 (1991).

    Article  CAS  Google Scholar 

  21. Goñi, F.M. et al. The interaction of phosphatidylcholine bilayers with Triton X-100. Eur. J. Biochem. 160, 659–665 (1986).

    Article  Google Scholar 

  22. Heerklotz, H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83, 2693–2701 (2002).

    Article  CAS  Google Scholar 

  23. Jackson, M.L., Schmidt, C.F., Lichtenberg, D., Litman, B.J. & Albert, A.D. Solubilization of phosphatidylcholine bilayers by octyl glucoside. Biochemistry 21, 4576–4582 (1982).

    Article  CAS  Google Scholar 

  24. Ollivon, M., Eidelman, O., Blumenthal, R. & Walter, A. Micelle–vesicle transition of egg phosphatidylcholine and octyl glucoside. Biochemistry 27, 1695–1703 (1988).

    Article  CAS  Google Scholar 

  25. Hjelm, R.P., Thiyagarajan, P. & Alkanonyuksel, H. Organization of phosphatidylcholine and bile-salt in rodlike mixed micelles. J. Phys. Chem. 96, 8653–8661 (1992).

    Article  CAS  Google Scholar 

  26. Keller, S., Heerklotz, H., Jahnke, N. & Blume, A. Thermodynamics of lipid membrane solubilization by sodium dodecyl sulfate. Biophys. J. 90, 4509–4521 (2006).

    Article  CAS  Google Scholar 

  27. Keller, M., Kerth, A. & Blume, A. Thermodynamics of interaction of octyl glucoside with phosphatidylcholine vesicles: partitioning and solubilization as studied by high sensitivity titration calorimetry. Biochim. Biophys. Acta 1326, 178–192 (1997).

    Article  CAS  Google Scholar 

  28. Opatowski, E., Kozlov, M.M. & Lichtenberg, D. Partitioning of octyl glucoside between octyl glucoside/phosphatidylcholine mixed aggregates and aqueous media as studied by isothermal titration calorimetry. Biophys. J. 73, 1448–1457 (1997).

    Article  CAS  Google Scholar 

  29. Roth, Y., Opatowski, E., Lichtenberg, D. & Kozlov, M.M. Phase behavior of dilute aqueous solutions of lipid–surfactant mixtures: effects of finite size of micelles. Langmuir 26, 2052–2061 (2000).

    Article  Google Scholar 

  30. Chellani, M. Isothermal titration calorimetry: biological applications. Am. Biotechnol. Lab. 17, 14–18 (1999).

    CAS  Google Scholar 

  31. Hope, M.J., Bally, M.B., Webb, G. & Cullis, P.R. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta 812, 55–65 (1985).

    Article  CAS  Google Scholar 

  32. MacDonald, R.C. et al. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta 1061, 297–303 (1991).

    Article  CAS  Google Scholar 

  33. Heerklotz, H., Binder, H., Lantzsch, G., Klose, G. & Blume, A. Lipid/detergent interaction thermodynamics as a function of molecular shape. J. Phys. Chem. B. 101, 639–645 (1997).

    Article  CAS  Google Scholar 

  34. Opatowski, E., Lichtenberg, D. & Kozlov, M.M. The heat of transfer of lipid and surfactant from vesicles into micelles in mixtures of phospholipid and surfactant. Biophys. J. 73, 1458–1467 (1997).

    Article  CAS  Google Scholar 

  35. Wenk, M.R. & Seelig, J. Vesicle–micelle transformation of phosphatidylcholine/octyl-β-D-glucopyranoside mixtures as detected with titration calorimetry. J. Phys. Chem. B. 101, 5224–5231 (1997).

    Article  CAS  Google Scholar 

  36. Tan, A.M., Ziegler, A., Steinbauer, B. & Seelig, J. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes. Biophys. J. 83, 1547–1556 (2002).

    Article  CAS  Google Scholar 

  37. Hildebrand, A., Beyer, K., Neubert, R., Garidel, P. & Blume, A. Temperature dependence of the interaction of cholate and deoxycholate with fluid model membranes and their solubilization into mixed micelles. Colloids Surf. B. Biointerfaces 32, 335–351 (2003).

    Article  CAS  Google Scholar 

  38. Hildebrand, A., Neubert, R., Garidel, P. & Blume, A. Bile salt induced solubilization of synthetic phosphatidylcholine vesicles studied by isothermal titration calorimetry. Langmuir 18, 2836–2847 (2002).

    Article  CAS  Google Scholar 

  39. Epand, R.M. & Epand, R.F. Calorimetric detection of curvature strain in phospholipid bilayers. Biophys. J. 66, 1450–1456 (1994).

    Article  CAS  Google Scholar 

  40. Heerklotz, H.H., Binder, H. & Schmiedel, H. Excess enthalpies of mixing in phospholipid–additive membranes. J. Phys. Chem. B. 102, 5363–5368 (1998).

    Article  CAS  Google Scholar 

  41. Wenk, M.R. & Seelig, J. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation. Biochemistry 37, 3909–3916 (1998).

    Article  CAS  Google Scholar 

  42. Wieprecht, T., Apostolov, O., Beyermann, M. & Seelig, J. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Biochemistry 39, 442–452 (2000).

    Article  CAS  Google Scholar 

  43. Ongena, M. & Jacques, P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16, 115–125 (2008).

    Article  CAS  Google Scholar 

  44. Heerklotz, H. & Seelig, J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur. Biophys. J. 36, 305–314 (2007).

    Article  CAS  Google Scholar 

  45. Binder, H. & Lindblom, G. Charge-dependent translocation of the Trojan peptide penetratin across lipid membranes. Biophys. J. 85, 982–995 (2003).

    Article  CAS  Google Scholar 

  46. Bárány-Wallje, E. et al. A critical reassessment of penetratin translocation across lipid membranes. Biophys. J. 89, 2513–2521 (2005).

    Article  Google Scholar 

  47. Sauer, I. et al. Dipalmitoylation of a cellular uptake-mediating apolipoprotein E-derived peptide as a promising modification for stable anchorage in liposomal drug carriers. Biochim. Biophys. Acta 1758, 552–561 (2006).

    Article  CAS  Google Scholar 

  48. Keller, S. et al. Membrane-mimetic nanocarriers formed by a dipalmitoylated cell-penetrating peptide. Angew. Chem. Int. Ed. 44, 5252–5255 (2005).

    Article  CAS  Google Scholar 

  49. Heerklotz, H.H., Binder, H. & Epand, R.M. A 'release' protocol for isothermal titration calorimetry. Biophys. J. 76, 2606–2613 (1999).

    Article  CAS  Google Scholar 

  50. Keller, S., Heerklotz, H. & Blume, A. Monitoring lipid membrane translocation of sodium dodecyl sulfate by isothermal titration calorimetry. J. Am. Chem. Soc. 128, 1279–1286 (2006).

    Article  CAS  Google Scholar 

  51. Keller, S., Tsamaloukas, A. & Heerklotz, H. A quantitative model describing the selective solubilization of membrane domains. J. Am. Chem. Soc. 127, 11469–11476 (2005).

    Article  CAS  Google Scholar 

  52. Beck, A., Tsamaloukas, A., Jurcevic, P. & Heerklotz, H. Additive action of two or more solutes on lipid membranes. Langmuir 24, 8833–8840 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grant 341920-07 from NSERC to H.H. and by grant KE 1478/1-1 from the Deutsche Forschungsgemeinschaft (DFG) to S.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Heerklotz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heerklotz, H., Tsamaloukas, A. & Keller, S. Monitoring detergent-mediated solubilization and reconstitution of lipid membranes by isothermal titration calorimetry. Nat Protoc 4, 686–697 (2009). https://doi.org/10.1038/nprot.2009.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.35

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing