Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measuring behavioral and endocrine responses to novelty stress in adult zebrafish

Abstract

Several behavioral assays are currently used for high-throughput neurophenotyping and screening of genetic mutations and psychotropic drugs in zebrafish (Danio rerio). In this protocol, we describe a battery of two assays to characterize anxiety-related behavioral and endocrine phenotypes in adult zebrafish. Here, we detail how to use the 'novel tank' test to assess behavioral indices of anxiety (including reduced exploration, increased freezing behavior and erratic movement), which are quantifiable using manual registration and computer-aided video-tracking analyses. In addition, we describe how to analyze whole-body zebrafish cortisol concentrations that correspond to their behavior in the novel tank test. This protocol is an easy, inexpensive and effective alternative to other methods of measuring stress responses in zebrafish, thus enabling the rapid acquisition and analysis of large amounts of data. As will be shown here, fish anxiety-like behavior can be either attenuated or exaggerated depending on stress or drug exposure, with cortisol levels generally expected to parallel anxiety behaviors. This protocol can be completed over the course of 2 d, with a variable testing duration depending on the number of fish used.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Novel tank test for behavioral testing in adult zebrafish.
Figure 2: Behavioral effects of anxiolytic and anxiogenic manipulations in adult zebrafish tested in the 6-min novel tank test.
Figure 3: Typical representative trace images of zebrafish behavior in the 6-min novel tank test, generated by CleverSys or Noldus-based video-tracking systems.
Figure 4: Endocrine responses (whole-body cortisol levels, assessed by ELISA assay) to various experimental manipulations in adult zebrafish.
Figure 5: Temporal three-dimensional (3D) reconstructions of zebrafish traces.

Similar content being viewed by others

References

  1. Kokel, D. & Peterson, R.T. Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Brief Funct. Genomic. Proteomic. 7, 483–490 (2008).

    Article  CAS  Google Scholar 

  2. Guo, S. Using zebrafish to assess the impact of drugs on neural development and function. Expert Opin. Drug Discov. 4, 715–726 (2009).

    Article  CAS  Google Scholar 

  3. Peterson, R.T. & Fishman, M.C. Discovery and use of small molecules for probing biological processes in zebrafish. Methods Cell Biol. 76, 569–591 (2004).

    Article  CAS  Google Scholar 

  4. Zon, L.I. & Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    Article  CAS  Google Scholar 

  5. Miklosi, A. & Andrew, R.J. The zebrafish as a model for behavioral studies. Zebrafish 3, 227–234 (2006).

    Article  Google Scholar 

  6. Best, J.D. & Alderton, W.K. Zebrafish: an in vivo model for the study of neurological diseases. Neuropsychiatr. Dis. Treat. 4, 567–576 (2008).

    Article  CAS  Google Scholar 

  7. Key, B. & Devine, C.A. Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods Cell Sci. 25, 1–6 (2003).

    Article  CAS  Google Scholar 

  8. Levin, E.D. & Chen, E. Nicotinic involvement in memory function in zebrafish. Neurotoxicol. Teratol. 26, 731–735 (2004).

    Article  CAS  Google Scholar 

  9. Blaser, R. & Gerlai, R. Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav. Res. Methods 38, 456–469 (2006).

    Article  Google Scholar 

  10. Levin, E.D., Bencan, Z. & Cerutti, D.T. Anxiolytic effects of nicotine in zebrafish. Physiol. Behav. 90, 54–58 (2007).

    Article  CAS  Google Scholar 

  11. Lopez-Patino, M.A., Yu, L., Cabral, H. & Zhdanova, I.V. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol. Behav. 93, 160–171 (2008).

    Article  CAS  Google Scholar 

  12. Egan, R.J. et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205, 38–44 (2009).

    Article  CAS  Google Scholar 

  13. Spence, R., Gerlach, G., Lawrence, C. & Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 83, 13–34 (2008).

    Article  Google Scholar 

  14. Gerlai, R., Lee, V. & Blaser, R. Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol. Biochem. Behav. 85, 752–761 (2006).

    Article  CAS  Google Scholar 

  15. Bencan, Z., Sledge, D. & Levin, E.D. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol. Biochem. Behav. 94, 75–80 (2009).

    Article  CAS  Google Scholar 

  16. Wong, K. et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav. Brain Res. 208, 457 (2009).

  17. Stewart, A. et al. The developing utility of zebrafish in modeling neurobehavioral disorders. Int. J. Comp. Psychol. 23, 104–121 (2010).

    Google Scholar 

  18. Choleris, E., Thomas, A.W., Kavaliers, M. & Prato, F.S. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci. Biobehav. Rev. 25, 235–260 (2001).

    Article  CAS  Google Scholar 

  19. Streng, J. Open-field behavior in four inbred mouse strains. Can. J. Psychol. 25, 62–68 (1971).

    Article  CAS  Google Scholar 

  20. Bronikowski, A.M. et al. Open-field behavior of house mice selectively bred for high voluntary wheel-running. Behav. Genet. 31, 309–316 (2001).

    Article  CAS  Google Scholar 

  21. Cachat, J. et al. Modeling withdrawal syndrome in zebrafish. Behav. Brain Res. 208, 371–376 (2009).

    Article  Google Scholar 

  22. Sackerman, J. et al. Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Int. J. Comp. Psychol. 23, 43–61 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Bretaud, S. et al. A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience 146, 1109–1116 (2007).

    Article  CAS  Google Scholar 

  24. Ninkovic, J. & Bally-Cuif, L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39, 262–274 (2006).

    Article  CAS  Google Scholar 

  25. Maximino, C., Marques de Brito, T., Dias, C.A., Gouveia, A., Jr. & Morato, S. Scototaxis as anxiety-like behavior in fish. Nat. Protoc. 5, 209–216 (2010).

    Article  CAS  Google Scholar 

  26. Maximino, C. et al. Parametric analyses of anxiety in zebrafish scototaxis. Behav. Brain. Res. 210, 1–7 (2010).

    Article  Google Scholar 

  27. Miller, N. & Gerlai, R. Quantification of shoaling behaviour in zebrafish (Danio rerio). Behav. Brain Res. 184, 157–166 (2007).

    Article  Google Scholar 

  28. Grossman, L. et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav. Brain Res. 214, 277–284 (2010).

    Article  CAS  Google Scholar 

  29. Gerlai, R. Event recording and video-tracking: towards the development of high-throughput zebrafish screens. In Proc. 5th Conference on Methods in Behav. Res. (eds. Noldus, L.P.J.J, Grieco, F., Loijens, L.W.S. & Zimmerma, P.H.) ( 2005).

  30. Cachat, J.M. et al. Deconstructing adult zebrafish behavior with swim trace visualizations. In Zebrafish Neurobehavioral Protocols. (eds. Kalueff, A.V. & Cachat, J.) (Humana Press, Totowa, New Jersey, 2010).

  31. Best, J.D. et al. Non-associative learning in larval zebrafish. Neuropsychopharmacology 33, 1206–1215 (2008).

    Article  CAS  Google Scholar 

  32. Creton, R. Automated analysis of behavior in zebrafish larvae. Behav. Brain Res. 203, 127–136 (2009).

    Article  Google Scholar 

  33. Eddins, D., Cerutti, D., Williams, P., Linney, E. & Levin, E.D. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol. Teratol. 32, 99–108 (2010).

    Article  CAS  Google Scholar 

  34. Carvan, M.J., III., Loucks, E., Weber, D.N. & Williams, F.E. Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol. Teratol. 26, 757–768 (2004).

    Article  CAS  Google Scholar 

  35. Emran, F., Rihel, J. & Dowling, J.E. A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J. Vis. Exp. 20, 923 (2008).

    Google Scholar 

  36. Barcellos, L.J.G. et al. Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture 272, 774–778 (2007).

    Article  CAS  Google Scholar 

  37. Willner, P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134, 319–329 (1997).

    Article  CAS  Google Scholar 

  38. Alsop, D. & Vijayan, M.M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R711–719 (2008).

    Article  CAS  Google Scholar 

  39. Winberg, S., Nilsson, A., Hylland, P., Soderstom, V. & Nilsson, G.E. Serotonin as a regulator of hypothalamic-pituitary-interrenal activity in teleost fish. Neurosci. Lett. 230, 113–116 (1997).

    Article  CAS  Google Scholar 

  40. Rabbani, M., Hajhashemi, V. & Mesripour, A. Increase in brain corticosterone concentration and recognition memory impairment following morphine withdrawal in mice. Stress 12, 451–456 (2009).

    Article  CAS  Google Scholar 

  41. Borlikova, G.G., Le Merrer, J. & Stephens, D.N. Previous experience of ethanol withdrawal increases withdrawal-induced c-fos expression in limbic areas, but not withdrawal-induced anxiety and prevents withdrawal-induced elevations in plasma corticosterone. Psychopharmacology (Berl) 185, 188–200 (2006).

    Article  CAS  Google Scholar 

  42. von Krogh, K., Sorensen, C., Nilsson, G.E. & Overli, O. Forebrain cell proliferation, behavior, and physiology of zebrafish, Danio rerio, kept in enriched or barren environments. Physiol. Behav. (2010).

  43. Ramsay, J.M. et al. Whole-body cortisol is an indicator of crowding stress in adult zebrafish, Danio rerio. Aquaculture 258, 565–574 (2006).

    Article  CAS  Google Scholar 

  44. Canavello, P.R. et al. Measuring endocrine (cortisol) responses of zebrafish to stress. In Zebrafish Neurobehavioral Protocols (eds. Kalueff, A.V. & Cachat, J.) (Humana Press, Totowa, New Jersey, 2010).

  45. Ramsay, J.M. et al. Whole-body cortisol response of zebrafish to acute net handling stress. Aquaculture 297, 157–162 (2009).

    Article  CAS  Google Scholar 

  46. Coe, T.S. et al. Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies. Ecotoxicology 18, 144–150 (2009).

    Article  CAS  Google Scholar 

  47. Gerlai, R., Ahmad, F. & Prajapati, S. Differences in acute alcohol-induced behavioral responses among zebrafish populations. Alcohol. Clin. Exp. Res. 32, 1763–1773 (2008).

    Article  Google Scholar 

  48. Dlugos, C.A. & Rabin, R.A. Ethanol effects on three strains of zebrafish: model system for genetic investigations. Pharmacol. Biochem. Behav. 74, 471–480 (2003).

    Article  CAS  Google Scholar 

  49. Keedwell, P.A., Poon, L., Papadopoulos, A.S., Marshall, E.J. & Checkley, S.A. Salivary cortisol measurements during a medically assisted alcohol withdrawal. Addict. Biol. 6, 247–256 (2001).

    Article  CAS  Google Scholar 

  50. Lovallo, W.R. Cortisol secretion patterns in addiction and addiction risk. Int. J. Psychophysiol. 59, 195–202 (2006).

    Article  Google Scholar 

  51. Olsvik, P.A., Lie, K.K. & Hevroy, E.M. Do anesthetics and sampling strategies affect transcription analysis of fish tissues? BMC Mol. Biol. 8, 48 (2007).

    Article  Google Scholar 

  52. Zon, L.I. Zebrafish: a new model for human disease. Genome Res. 9, 99–100 (1999).

    CAS  PubMed  Google Scholar 

  53. Rihel, J. et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327, 348–351 (2010).

    Article  CAS  Google Scholar 

  54. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

  55. Bencan, Z. & Levin, E.D. The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol. Behav. 95, 408–412 (2008).

    Article  CAS  Google Scholar 

  56. Loucks, E. & Carvan, M.J. 3rd Strain-dependent effects of developmental ethanol exposure in zebrafish. Neurotoxicol. Teratol. 26, 745–755 (2004).

    Article  CAS  Google Scholar 

  57. Westerfield, M. (ed.) The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) (University of Oregon Press, Eugene, 2000).

  58. Institute for Laboratory Animal Resources, National Research Council. (ed.) Guide for the Care and Use of Laboratory Animals, 6th edn. (National Academies Press, Washington, DC, 2002).

  59. Wilkes, L. et al. Development of enrichment criteria for zebrafish (Danio rerio) used in laboratory studies. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 153, S112 (2009).

    Article  Google Scholar 

  60. Gortz, N. et al. Effects of environmental enrichment on exploration, anxiety, and memory in female TgCRND8 Alzheimer mice. Behav. Brain Res. 191, 43–48 (2008).

    Article  Google Scholar 

  61. Hughes, R.N. & Collins, M.A. Enhanced habituation and decreased anxiety by environmental enrichment and possible attenuation of these effects by chronic alpha-tocopherol (vitamin E) in aging male and female rats. Pharmacol. Biochem. Behav. 94, 534–542 (2010).

    Article  CAS  Google Scholar 

  62. Benaroya-Milshtein, N. et al. Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. Eur. J. Neurosci. 20, 1341–1347 (2004).

    Article  CAS  Google Scholar 

  63. von Krogh, K. Environmental enrichment and its effects on telencephalic neurogenesis and behaviour in isolated adult zebrafish, Danio rerio. Masters thesis, University of Oslo, Oslo, Norway (2007).

  64. Braida, D. et al. Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology (Berl) 190, 441–448 (2007).

    Article  CAS  Google Scholar 

  65. Blaser, R.E., Chadwick, L. & McGinnis, G.C. Behavioral measures of anxiety in zebrafish (Danio rerio). Behav. Brain Res. 208, 56–62 (2010).

    Article  CAS  Google Scholar 

  66. Bass, S.L. & Gerlai, R. Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav. Brain Res. 186, 107–117 (2008).

    Article  Google Scholar 

  67. Speedie, N. & Gerlai, R. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav. Brain Res. 188, 168–177 (2008).

    Article  CAS  Google Scholar 

  68. Volavka, J. et al. Short-term hormonal effects of naloxone in man. Psychoneuroendocrinology 5, 225–234 (1980).

    Article  CAS  Google Scholar 

  69. Ray, L.A., Mackillop, J., Leggio, L., Morgan, M. & Hutchison, K.E. Effects of naltrexone on cortisol levels in heavy drinkers. Pharmacol. Biochem. Behav. 91, 489–494 (2009).

    Article  CAS  Google Scholar 

  70. Litschauer, B., Schaller, G. & Wolzt, M. Naloxone does not influence cardiovascular responses to mild mental stress in postmenopausal women. Am. J. Physiol. Heart Circ. Physiol. 289, H2120–2125 (2005).

    Article  CAS  Google Scholar 

  71. Sink, T.D., Strange, R.J. & Sawyers, R.E. Clove oil used at lower concentrations is less effective than MS-222 at reducing cortisol stress responses in anesthetized rainbow trout. N. Am. J. Fish. Manag. 27, 156–161 (2007).

    Article  Google Scholar 

  72. Small, B.C. Anesthetic efficacy of metomidate and comparison of plasma cortisol responses to tricaine methanesulfonate, quinaldine and clove oil anesthetized channel catfish Ictalurus punctatus. Aquaculture 218, 177–185 (2003).

    Article  CAS  Google Scholar 

  73. Palic, D., Herolt, D.M., Andreasen, C.B., Menzel, B.W. & Roth, J.A. Anesthetic efficacy of tricaine methanesulfonate, metomidate and eugenol: effects on plasma cortisol concentration and neutrophil function in fathead minnows (Pimephales promelas Rafinesque, 1820). Aquaculture 254, 675–685 (2006).

    Article  CAS  Google Scholar 

  74. Welker, T.L., Lim, C., Yildirim-Aksoy, M. & Klesius, P.H. Effect of buffered and unbuffered tricaine methanesulfonate (MS-222) at different concentrations on the stress responses of channel catfish, Ictalurus punctatus Rafinesque. J. Appl. Aquaculture 19, 1–18 (2007).

    Article  Google Scholar 

  75. Crosby, T.C., Hill, J.E., Watson, C.A., Yanong, R.P.E. & Strange, R. Effects of tricaine methanesulfonate, hypno, metomidate, quinaldine, and salt on plasma cortisol levels following acute stress in threespot Gourami Trichogaster trichopterus. J. Aquat. Anim. Health 18, 58–63 (2006).

    Article  Google Scholar 

  76. Khattiya, R. et al. Comparing of plasma cortisol in mekong giant catfish (Pangasianodon gigas) after anesthetized with tricaine methanesulfonate and clove oil. In Proc. 5th World Fish. Congr. World Fisheries Congress, Yokohama, Japan, (2008).

  77. Davis, K.B., Parker, N.C. & Suttle, M.A. Plasma corticosteroids and chlorides in striped bass exposed to tricaine methanesulfonate, quinaldine, etomidate, and salt. Prog. Fish-Cult. 44, 205–207 (1982).

    Article  CAS  Google Scholar 

  78. Strange, R.J. & Schreck, C.B. Anaesthetic and handling stress on survival and cortisol concentration in yearling chinook salmon (Oncorhynchus tsawytscha). J. Fis. Res. Board Can. 35, 345–349 (1978).

    Article  CAS  Google Scholar 

  79. Cachat, J.M. et al. Video-aided analysis of zebrafish locomotion and anxiety-related behavioral responses. In Zebrafish Models in Neurobehavioral Research (eds. Kalueff, A.V. & Cachat, J.) (Humana Press, Totowa, New Jersey, 2010).

Download references

Acknowledgements

This study was supported by Tulane University's Gordon Fellowship and the Georges Lurcy Fellowship as well as Provost's Scholarly Enrichment Fund, Newcomb Fellows Grant, Louisiana Board of Regents' fund grant and National Alliance for Research on Schizophrenia and Depression (NARSAD) Young Investigator awards. The colors of the bar graphs were inspired by the New Orleans Saints.

Author information

Authors and Affiliations

Authors

Contributions

A.S. organized the protocol, analyzed the data and drafted the paper. J.C. developed the methodology, analyzed the data and contributed to drafting and editing the paper. A.V.K. contributed to drafting and editing the paper, generating and analyzing the data and general oversight of the project. All other authors contributed to data collection, analysis, interpretation and paper preparation.

Corresponding author

Correspondence to Allan V Kalueff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Typical patterns of a Zebrafish novel tank test behavior (MOV 26088 kb)

Supplementary Information

TopScan is an alternative video-tracking program that allows the user to define the parameters and calibrate the system to analyze key locomotory and behavioral endpoints. This software can be used in lieu of Ethovision XT7 detailed in the protocol. (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cachat, J., Stewart, A., Grossman, L. et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5, 1786–1799 (2010). https://doi.org/10.1038/nprot.2010.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.140

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing