Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Overexpressing human membrane proteins in stably transfected and clonal human embryonic kidney 293S cells

Abstract

X-ray crystal structures of human membrane proteins, although potentially of extremely great impact, are highly underrepresented relative to those of prokaryotic membrane proteins. One key reason for this is that human membrane proteins can be difficult to express at a level, and at a quality, suitable for structural studies. This protocol describes the methods that we use to overexpress human membrane proteins from clonal human embryonic kidney 293 (HEK293S) cells lacking N-acetylglucosaminyltransferase I (GnTI), and was recently used in our 2.1-Å X-ray crystal structure determination of human RhCG. Upon identification of highly expressing cell lines, suspension cell cultures are scaled up in a facile manner either using spinner flasks or cellbag bioreactors, resulting in a final purified yield of 0.5 mg of membrane protein per liter of medium. The protocol described here is reliable and cost effective, can be used to express proteins that would otherwise be toxic to mammalian cells and can be completed in 8–10 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression testing of full-length human Rh membrane proteins in transiently transfected HEK293S GnTI cells.
Figure 2
Figure 3: Dilution of transfected HEK293S GnTI cells before drug selection.
Figure 4: Expression levels from stably transfected and clonal HEK293S GnTI cell lines as determined by western blotting.
Figure 5: Medium- and large-scale HEK293S GnTI cell cultures.

Similar content being viewed by others

References

  1. Engelman, D.M. et al. Membrane protein folding: beyond the two-stage model. FEBS Lett. 555, 122–125 (2003).

    Article  CAS  Google Scholar 

  2. Popot, J.L. & Engelman, D.M. Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29, 4031–4037 (1990).

    Article  CAS  Google Scholar 

  3. Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005).

    Article  CAS  Google Scholar 

  4. Rapoport, T.A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65, 271–303 (1996).

    Article  CAS  Google Scholar 

  5. Wagner, S. et al. Consequences of membrane protein overexpression in Escherichia coli. Mol. Cell Proteomics 6, 1527–1550 (2007).

    Article  CAS  Google Scholar 

  6. Wagner, S. et al. Tuning Escherichia coli for membrane protein overexpression. Proc. Natl. Acad. Sci. USA 105, 14371–14376 (2008).

    Article  CAS  Google Scholar 

  7. Bowie, J.U. Solving the membrane protein folding problem. Nature 438, 581–589 (2005).

    Article  CAS  Google Scholar 

  8. Klepsch, M.M., Persson, J.O. & de Gier, J.W. Consequences of the overexpression of a eukaryotic membrane protein, the human KDEL receptor, in Escherichia coli. J. Mol. Biol. 407, 532–542 (2011).

    Article  CAS  Google Scholar 

  9. White, S.H. & Wimley, W.C. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999).

    Article  CAS  Google Scholar 

  10. Dowhan, W. & Bogdanov, M. Lipid-dependent membrane protein topogenesis. Annu. Rev. Biochem. 78, 515–540 (2009).

    Article  CAS  Google Scholar 

  11. Spector, A.A. & Yorek, M.A. Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015–1035 (1985).

    CAS  PubMed  Google Scholar 

  12. Guan, L., Smirnova, I.N., Verner, G., Nagamori, S. & Kaback, H.R. Manipulating phospholipids for crystallization of a membrane transport protein. Proc. Natl. Acad. Sci. USA 103, 1723–1726 (2006).

    Article  CAS  Google Scholar 

  13. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  14. Tate, C.G. Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett. 504, 94–98 (2001).

    Article  CAS  Google Scholar 

  15. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).

    Article  CAS  Google Scholar 

  16. Kwong, P.D. et al. Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). J. Biol. Chem. 274, 4115–4123 (1999).

    Article  CAS  Google Scholar 

  17. Aricescu, A.R., Lu, W. & Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 62, 1243–1250 (2006).

    Article  Google Scholar 

  18. Chang, V.T. et al. Glycoprotein structural genomics: solving the glycosylation problem. Structure 15, 267–273 (2007).

    Article  CAS  Google Scholar 

  19. Lee, J.E., Fusco, M.L. & Ollmann Saphire, E. An efficient platform for screening expression and crystallization of glycoproteins produced in human cells. Nat. Protoc. 4, 592–604 (2009).

    Article  CAS  Google Scholar 

  20. Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419–13424 (2002).

    Article  CAS  Google Scholar 

  21. Gruswitz, F. et al. Function of human Rh based on structure of RhCG at 2.1 A. Proc. Natl. Acad. Sci. USA 107, 9638–9643 (2010).

    Article  CAS  Google Scholar 

  22. Standfuss, J. et al. Crystal structure of a thermally stable rhodopsin mutant. J. Mol. Biol. 372, 1179–1188 (2007).

    Article  CAS  Google Scholar 

  23. Chelikani, P., Reeves, P.J., Rajbhandary, U.L. & Khorana, H.G. The synthesis and high-level expression of a beta2-adrenergic receptor gene in a tetracycline-inducible stable mammalian cell line. Protein Sci. 15, 1433–1440 (2006).

    Article  CAS  Google Scholar 

  24. Reeves, P.J., Thurmond, R.L. & Khorana, H.G. Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc. Natl. Acad. Sci. USA 93, 11487–11492 (1996).

    Article  CAS  Google Scholar 

  25. Takayama, H., Chelikani, P., Reeves, P.J., Zhang, S. & Khorana, H.G. High-level expression, single-step immunoaffinity purification and characterization of human tetraspanin membrane protein CD81. PLoS ONE 3, e2314 (2008).

    Article  Google Scholar 

  26. Rosenbaum, D.M. et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    Article  CAS  Google Scholar 

  27. Wurm, F. & Bernard, A. Large-scale transient expression in mammalian cells for recombinant protein production. Curr. Opin. Biotechnol. 10, 156–159 (1999).

    Article  CAS  Google Scholar 

  28. Meissner, P. et al. Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol. Bioeng. 75, 197–203 (2001).

    Article  CAS  Google Scholar 

  29. Bailey, C.G., Tait, A.S. & Sunstrom, N.A. High-throughput clonal selection of recombinant CHO cells using a dominant selectable and amplifiable metallothionein-GFP fusion protein. Biotechnol. Bioeng. 80, 670–676 (2002).

    Article  CAS  Google Scholar 

  30. White, M.A., Clark, K.M., Grayhack, E.J. & Dumont, M.E. Characteristics affecting expression and solubilization of yeast membrane proteins. J. Mol. Biol. 365, 621–636 (2007).

    Article  CAS  Google Scholar 

  31. Lewinson, O., Lee, A.T. & Rees, D.C. The funnel approach to the precrystallization production of membrane proteins. J. Mol. Biol. 377, 62–73 (2008).

    Article  CAS  Google Scholar 

  32. Reeves, P.J., Kim, J.M. & Khorana, H.G. Structure and function in rhodopsin: a tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants. Proc. Natl. Acad. Sci. USA 99, 13413–13418 (2002).

    Article  CAS  Google Scholar 

  33. Schlaeger, E.J. The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promoter of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J. Immunol. Methods 194, 191–199 (1996).

    Article  CAS  Google Scholar 

  34. Tharmalingam, T., Ghebeh, H., Wuerz, T. & Butler, M. Pluronic enhances the robustness and reduces the cell attachment of mammalian cells. Mol. Biotechnol. 39, 167–177 (2008).

    Article  CAS  Google Scholar 

  35. Falk, T. et al. Over-expression of the potassium channel Kir2.3 using the dopamine-1 receptor promoter selectively inhibits striatal neurons. Neuroscience 155, 114–127 (2008).

    Article  CAS  Google Scholar 

  36. Lohse, M.J. Stable overexpression of human beta 2-adrenergic receptors in mammalian cells. Naunyn. Schmiedebergs Arch. Pharmacol. 345, 444–451 (1992).

    Article  CAS  Google Scholar 

  37. Gorman, C.M., Howard, B.H. & Reeves, R. Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res. 11, 7631–7648 (1983).

    Article  CAS  Google Scholar 

  38. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    Article  CAS  Google Scholar 

  39. Newby, Z.E. et al. A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nat. Protoc. 4, 619–637 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health/National Institute of General Medical Sciences grants P50 GM73210, U54 GM094625 and R37 GM24485.

Author information

Authors and Affiliations

Authors

Contributions

S.C., F.G. and R.M.S. designed the experiments. S.C. and F.G. performed the experiments. S.C., J.E.P., F.G. and R.M.S. analyzed the data. V.S. and R.M.S. supervised personnel. S.C., J.E.P. and R.M.S. wrote the paper.

Corresponding author

Correspondence to Robert M Stroud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Full Sequence of pACMV-tetO. (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhary, S., Pak, J., Gruswitz, F. et al. Overexpressing human membrane proteins in stably transfected and clonal human embryonic kidney 293S cells. Nat Protoc 7, 453–466 (2012). https://doi.org/10.1038/nprot.2011.453

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.453

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing