Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mouse model of oropharyngeal candidiasis

Abstract

Oropharyngeal candidiasis is a frequent cause of morbidity in patients with defects in cell-mediated immunity or saliva production. Animal models of this infection are important for studying disease pathogenesis and evaluating vaccines and antifungal therapies. Here we describe a simple mouse model of oropharyngeal candidiasis. Mice are rendered susceptible to oral infection by injection with cortisone acetate and then inoculated by placing a swab saturated with Candida albicans sublingually. This process results in a reproducible level of infection, the histopathology of which mimics that of pseudomembranous oropharyngeal candidiasis in humans. By using this model, data are obtained after 5–9 d of work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histopathology of a typical lesion in the mouse model of oropharyngeal candidiasis after 5 d of infection.
Figure 2
Figure 3: Time course of oropharyngeal candidiasis.

Similar content being viewed by others

References

  1. Sangeorzan, J.A. et al. Epidemiology of oral candidiasis in HIV-infected patients: colonization, infection, treatment, and emergence of fluconazole resistance. Am. J. Med. 97, 339–346 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Rhodus, N.L., Bloomquist, C., Liljemark, W. & Bereuter, J. Prevalence, density, and manifestations of oral Candida albicans in patients with Sjogren's syndrome. J. Otolaryngol. 26, 300–305 (1997).

    CAS  PubMed  Google Scholar 

  3. Willis, A.M. et al. Oral candidal carriage and infection in insulin-treated diabetic patients. Diabet. Med. 16, 675–679 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Redding, S.W. et al. Epidemiology of oropharyngeal Candida colonization and infection in patients receiving radiation for head and neck cancer. J. Clin. Microbiol. 37, 3896–3900 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Arribas, J.R. et al. Impact of protease inhibitor therapy on HIV-related oropharyngeal candidiasis. AIDS 14, 979–985 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Martins, M.D., Lozano-Chiu, M. & Rex, J.H. Declining rates of oropharyngeal candidiasis and carriage of Candida albicans associated with trends toward reduced rates of carriage of fluconazole-resistant C. albicans in human immunodeficiency virus-infected patients. Clin. Infect. Dis. 27, 1291–1294 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Kerdpon, D. et al. Oral manifestations of HIV infection in relation to clinical and CD4 immunological status in northern and southern Thai patients. Oral Dis. 10, 138–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Chidzonga, M.M. HIV/AIDS orofacial lesions in 156 Zimbabwean patients at referral oral and maxillofacial surgical clinics. Oral Dis. 9, 317–322 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Revankar, S.G. et al. Clinical evaluation and microbiology of oropharyngeal infection due to fluconazole-resistant Candida in human immunodeficiency virus-infected patients. Clin. Infect. Dis. 26, 960–963 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Pappas, P.G. et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 503–535 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Conti, H.R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saunus, J.M. et al. Early activation of the interleukin-23-17 axis in a murine model of oropharyngeal candidiasis. Mol. Oral Microbiol. 25, 343–356 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Ho, A.W. et al. IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail. J. Immunol. 185, 1063–1070 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Nett, J.E., Marchillo, K., Spiegel, C.A. & Andes, D.R. Development and validation of an in vivo Candida albicans biofilm denture model. Infect. Immun. 78, 3650–3659 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun, J.N. et al. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog. 6, e1001181 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chiang, L.Y. et al. Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis. Cell Microbiol. 9, 233–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Park, H. et al. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol. 7, 499–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kamai, Y., Kubota, M., Hosokawa, T., Fukuoka, T. & Filler, S.G. Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis. Infect. Immun. 70, 5256–5258 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dwivedi, P. et al. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS ONE 6, e16218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hao, B. et al. Candida albicans RFX2 encodes a DNA binding protein involved in DNA damage responses, morphogenesis, and virulence. Eukaryot. Cell 8, 627–639 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marquis, M. et al. CD8+ T cells but not polymorphonuclear leukocytes are required to limit chronic oral carriage of Candida albicans in transgenic mice expressing human immunodeficiency virus type 1. Infect. Immun. 74, 2382–2391 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sundstrom, P., Balish, E. & Allen, C.M. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J. Infect. Dis. 185, 521–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Wolf, J.M., Johnson, D.J., Chmielewski, D. & Davis, D.A. The Candida albicans ESCRT pathway makes Rim101-dependent and -independent contributions to pathogenesis. Eukaryot. Cell 9, 1203–1215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spellberg, B.J. et al. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J. Infect. Dis. 194, 256–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Kamai, Y., Kubota, M., Hosokawa, T., Fukuoka, T. & Filler, S.G. New model of oropharyngeal candidiasis in mice. Antimicrob. Agents Chemother. 45, 3195–3197 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rahman, D., Mistry, M., Thavaraj, S., Challacombe, S.J. & Naglik, J.R. Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions. Microbes. Infect. 9, 615–622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naglik, J.R., Fidel, P.L. Jr. & Odds, F.C. Animal models of mucosal Candida infection. FEMS Microbiol. Lett. 283, 129–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Rachelefsky, G.S., Liao, Y. & Faruqi, R. Impact of inhaled corticosteroid-induced oropharyngeal adverse events: results from a meta-analysis. Ann. Allergy Asthma Immunol. 98, 225–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Farah, C.S. et al. Primary role for CD4+ T lymphocytes in recovery from oropharyngeal candidiasis. Infect. Immun. 70, 724–731 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cantorna, M.T. & Balish, E. Mucosal and systemic candidiasis in congenitally immunodeficient mice. Infect. Immun. 58, 1093–1100 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. de Repentigny, L. et al. Mucosal candidiasis in transgenic mice expressing human immunodeficiency virus type 1. J. Infect. Dis. 185, 1103–1114 (2002).

    Article  PubMed  Google Scholar 

  32. Cheng, S. et al. The role of Candida albicans NOT5 in virulence depends upon diverse host factors in vivo. Infect. Immun. 73, 7190–7197 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant R01DE017088 and contract no. N01-AI-30041 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

N.V.S. and S.G.F. performed the experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Scott G Filler.

Ethics declarations

Competing interests

S.G.F. is a cofounder of and has equity in NovaDigm Therapeutics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solis, N., Filler, S. Mouse model of oropharyngeal candidiasis. Nat Protoc 7, 637–642 (2012). https://doi.org/10.1038/nprot.2012.011

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.011

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing