Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database

Abstract

Untargeted metabolomics provides a comprehensive platform for identifying metabolites whose levels are altered between two or more populations. By using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS), hundreds to thousands of peaks with a unique m/z ratio and retention time are routinely detected from most biological samples in an untargeted profiling experiment. Each peak, termed a metabolomic feature, can be characterized on the basis of its accurate mass, retention time and tandem mass spectral fragmentation pattern. Here a seven-step protocol is suggested for such a characterization by using the METLIN metabolite database. The protocol starts from untargeted metabolomic LC-Q-TOF-MS data that have been analyzed with the bioinformatics program XCMS, and it describes a strategy for selecting interesting features as well as performing subsequent targeted tandem MS. The seven steps described will require 2–4 h to complete per feature, depending on the compound.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determination of monoisotopic peak, charge state and adduct of the precursor ion.
Figure 2: Insufficient chromatographic resolution of a species can lead to overlapping peaks that produce convoluted MS/MS spectra.
Figure 3: Screenshot of metabolite search in METLIN.
Figure 4
Figure 5: Screenshot of the spectrum of hypoxanthine.
Figure 6: A comparison of experimental (black) and METLIN standard (red) spectra for three metabolites.
Figure 7: The importance of retention time, accurate mass and fragmentation for identification.

Similar content being viewed by others

References

  1. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wikoff, W.R., Gangoiti, J.A., Barshop, B.A. & Siuzdak, G. Metabolomics identifies perturbations in human disorders of propionate metabolism. Clin. Chem. 53, 2169–2176 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Wikoff, W.R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA. 106, 3698–3703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vinayavekhin, N. & Saghatelian, A. Regulation of alkyl-dihydrothiazole-carboxylates (ATCs) by iron and the Pyochelin gene cluster in Pseudomonas aeruginosa. ACS Chem. Biol. 4, 617–623 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Kalisiak, J. et al. Identification of a new endogenous metabolite and the characterization of its protein interactions through an immobilization approach. J. Am. Chem. Soc. 131, 378–386 (2008).

    Article  Google Scholar 

  6. Leiss, K.A., Maltese, F., Choi, Y.H., Verpoorte, R. & Klinkhamer, P.G.L. Identification of chlorogenic acid as a resistance factor for thrips in Chrysanthemum. Plant Physiol. 150, 1567–1575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allen, J. et al. Discrimination of modes of action of antifungal substances by use of metabolic footprinting. Appl. Environ. Microbiol. 70, 6157–6165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clayton, T.A., Baker, D., Lindon, J.C., Everett, J.R. & Nicholson, J.K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl Acad. Sci. USA 106, 14728–14733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ludwig, C. & Viant, M.R. Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem. Anal. 21, 22–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Powers, R. NMR metabolomics and drug discovery. Magn. Reson. Chem. 47, S2–S11 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Dettmer, K., Aronov, P.A. & Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26, 51–78 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lei, Z., Huhman, D. & Sumner, L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 286, 25435–25442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smart, K.F., Aggio, R.B.M., Van Houtte, J.R. & Villas-Boas, S.G. Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nat. Protoc. 5, 1709–1729 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Dunn, W.B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Chan, E.C.Y., Pasikanti, K.K. & Nicholson, J.K. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat. Protoc. 6, 1483–1499 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Fiehn, O. et al. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157–1161 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Babushok, V.I. et al. Development of a database of gas chromatographic retention properties of organic compounds. J. Chromatogr. A 1157, 414–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kind, T. et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, F., Zou, L. & Ong, C.N. Multiorigination of chromatographic peaks in derivatized GC/MS metabolomics: a confounder that influences metabolic pathway interpretation. J. Proteome Res. 8, 5657–5665 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Nordstrom, A., Want, E., Northen, T., Lehtio, J. & Siuzdak, G. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal. Chem. 80, 421–429 (2007).

    Article  PubMed  Google Scholar 

  21. Wishart, D.S. et al. The human cerebrospinal fluid metabolome. J. Chromatogr. B 871, 164–173 (2008).

    Article  CAS  Google Scholar 

  22. Lu, W., Bennett, B.D. & Rabinowitz, J.D. Analytical strategies for LC–MS-based targeted metabolomics. J. Chromatogr. B 871, 236–242 (2008).

    Article  CAS  Google Scholar 

  23. Kaddurah-Daouk, R. et al. Lipidomic analysis of variation in response to simvastatin in the Cholesterol and Pharmacogenetics Study. Metabolomics 6, 191–201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vinayavekhin, N. & Saghatelian, A. Untargeted metabolomics. Curr. Protoc. Mol. Biol. 90, 30.1.1–30.1.24 (2001).

    Google Scholar 

  25. Johnson, C.H. et al. Radiation metabolomics. 4. UPLC-ESI-QTOFMS–based metabolomics for urinary biomarker discovery in γ-irradiated rats. Radiat. Res. 175, 473–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trupp, M. et al. Metabolomics reveals amino acids contribute to variation in response to simvastatin treatment. PLoS ONE 7, e38386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wikoff, W.R., Kalisak, E., Trauger, S., Manchester, M. & Siuzdak, G. Response and recovery in the plasma metabolome tracks the acute LCMV-induced immune response. J. Proteome Res. 8, 3578–3587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Panopoulos, A.D. et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22, 168–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Yanes, O. et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 6, 411–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marshall, A.G. & Hendrickson, C.L. High-resolution mass spectrometers. Annu. Rev. Anal. Chem. 1, 579–599 (2008).

    Article  CAS  Google Scholar 

  31. Verhoeven, H.A., Ric de Vos, C.H., Bino, R.J. & Hall, R.D. Plant metabolomics strategies based upon quadrupole time-of-flight mass spectrometry (QTOF-MS). Plant Metabolomics 57, 33–48 (2006).

    Article  CAS  Google Scholar 

  32. Kamleh, A. et al. Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: a method with wide applicability to analysis of biomolecules. Rapid Commun. Mass Spectrom. 22, 1912–1918 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Breitling, R., Pitt, A.R. & Barrett, M.P. Precision mapping of the metabolome. Trends Biotechnol. 24, 543–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Brown, S.C., Kruppa, G. & Dasseux, J.-L. Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom. Rev. 24, 223–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Smith, C.A. et al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Patti, G.J. et al. Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin. Nature Chem. Biol. 8, 232–234 (2012).

    Article  CAS  Google Scholar 

  37. Psychogios, N. et al. The human serum metabolome. PLoS One 6, e16957 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, L., Zhou, L., Chan, E.C.Y., Neo, J. & Beuerman, R.W. Characterization of the human tear metabolome by LC–MS/MS. J. Proteome Res. 10, 4876–4882 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Want, E.J. et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 5, 1005–1018 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Nebert, D.W., Zhang, G. & Vesell, E.S. From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab. Rev. 40, 187–224 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brown, M. et al. A metabolome pipeline: from concept to data to knowledge. Metabolomics 1, 39–51 (2005).

    Article  CAS  Google Scholar 

  42. Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Tautenhahn, R., Patti, G.J., Rinehart, D. & Siuzdak, G. XCMS Online: a web-based platform to process untargeted metabolomic data. Anal. Chem. 84, 5035–5039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kiefer, P., Delmotte, N.l. & Vorholt, J.A. Nanoscale ion-pair reversed-phase HPLC-MS for sensitive metabolome analysis. Anal. Chem. 83, 850–855 (2010).

    Article  PubMed  Google Scholar 

  45. Castro-Perez, J. et al. Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual-stage CID fragmentation coupled with ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 1552–1567 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsu, F.-F. & Turk, J. Elucidation of the double-bond position of long-chain unsaturated fatty acids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 19, 1673–1680 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thomas, M.C. et al. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Anal. Chem. 80, 303–311 (2007).

    Article  PubMed  Google Scholar 

  48. Gian Luigi, R. Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 77, 937–946 (2009).

    Article  Google Scholar 

  49. Ding, J. et al. Capillary LC coupled with high-mass measurement accuracy mass spectrometry for metabolic profiling. Anal. Chem. 79, 6081–6093 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Lindon, J.C. & Nicholson, J.K. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu. Rev. Anal. Chem. 1, 45–69 (2008).

    Article  CAS  Google Scholar 

  51. Cravatt, B. et al. Chemical characterization of a family of brain lipids that induce sleep. Science 268, 1506–1509 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Yanes, O., Tautenhahn, R., Patti, G.J. & Siuzdak, G. Expanding coverage of the metabolome for global metabolite profiling. Anal. Chem. 83, 2152–2161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tautenhahn, R. et al. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol. 30, 826–828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the California Institute of Regenerative Medicine (no. TR1-01219) (G.S.), the US National Institutes of Health (nos. R01 CA170737 (G.S.), R24 EY017540 (G.S.), P30 MH062261 (G.S.), RC1 HL101034(G.S.), P01 DA026146 (G.S.), and 1R01 ES022181-01) (G.J.P.) and the US National Institutes of Health-National Institute on Aging (no. L30 AG0 038036) (G.J.P.). Financial support was also received from the US Department of Energy (grant nos. FG02-07ER64325 and DE-AC0205CH11231) (G.S.).

Author information

Authors and Affiliations

Authors

Contributions

Z.-J.Z., A.W.S. and J.W. and contributed equally to the work described. G.J.P. and G.S. supervised the work. A.W.S., J.W. and G.J.P. performed the experiments. Z.-J.Z., A.W.S., J.W. and C.H.J. wrote the manuscript. Z.-J.Z., S.M.Y., G.J.P. and G.S. read and revised the manuscript.

Corresponding authors

Correspondence to Gary J Patti or Gary Siuzdak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Example of in-source fragmentation. Two species, m/z 480.3084 and m/z 339.2892 are observed to coelute (A), with both species observed in MS (B). Comparison of the high resolution parent ion and the MS/MS fragment (D) supports the characterization of m/z 480.3084 as a lysoPE(18:1). Note the prominent fragment at m/z 339.2892. m/z 339.2892 is observed in the MS scan (D). Fragmentation of this species provides the MS/MS spectrum (C) which is characteristic of a dehydrated oleoyl (18:1) glycerol, a major fragment of lysoPE(18:1). (PDF 411 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, ZJ., Schultz, A., Wang, J. et al. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc 8, 451–460 (2013). https://doi.org/10.1038/nprot.2013.004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.004

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research