Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A simple improved-throughput xylem protoplast system for studying wood formation

Abstract

Isolated protoplasts serve as a transient expression system that is highly representative of stable transgenics in terms of transcriptome responses. They can also be used as a cellular system to study gene transactivation and nucleocytoplasmic protein trafficking. They are particularly useful for systems studies in which stable transgenics and mutants are unavailable. We present a protocol for the isolation and transfection of protoplasts from wood-forming tissue, the stem-differentiating xylem (SDX), in the model woody plant Populus trichocarpa. The method involves tissue preparation, digestion of SDX cell walls, protoplast isolation and DNA transfection. Our approach is markedly faster and provides better yields than previous protocols; small (milligrams)- to large (20 g)-scale SDX preparations can be achieved in 60 s, with isolation of protoplasts and their subsequent transfection taking 50 min. Up to ten different samples can be processed simultaneously in this time scale. Our protocol gives a high yield (2.5 × 107 protoplasts per g of SDX) of protoplasts sharing 96% transcriptome identity with intact SDX.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell types in the stem of P. trichocarpa and the stem dipping approach for releasing protoplasts from wood-forming cells.
Figure 2: Workflows highlighting the difference between this protocol and previous protocols.
Figure 3: A healthy 3-month-old greenhouse-grown P. trichocarpa plant.
Figure 4: Ex vitro propagation of P. trichocarpa.
Figure 5: Transfection efficiency of SDX protoplasts.
Figure 6: RNA quality of SDX protoplasts.

Similar content being viewed by others

References

  1. Sarkanen, K.V. Renewable resources for the production of fuels and chemicals. Science 191, 773–776 (1976).

    Article  CAS  Google Scholar 

  2. Chiang, V. From rags to riches. Nat. Biotechnol. 20, 557–558 (2002).

    Article  CAS  Google Scholar 

  3. Ragauskas, A. et al. The path forward for biofuels and biomaterials. Science 311, 484–489 (2006).

    Article  CAS  Google Scholar 

  4. Hinchee, M. et al. Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell. Dev. Bio. Plant 45, 619–629 (2009).

    Article  Google Scholar 

  5. Evert, R.F. Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development (John Wiley & Sons, 2006).

  6. Li, Q. et al. Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proc. Natl. Acad. Sci. USA 109, 14699–14704 (2012).

    Article  CAS  Google Scholar 

  7. Lin, Y. et al. SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. Plant Cell 25, 4324–4341 (2013).

    Article  CAS  Google Scholar 

  8. Lu, S. et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc. Natl. Acad. Sci. USA 110, 10848–10853 (2013).

    Article  CAS  Google Scholar 

  9. Merkle, S.A. & Dean, J.F. Forest tree biotechnology. Curr. Opin. Biotechnol. 11, 298–302 (2000).

    Article  CAS  Google Scholar 

  10. Song, J., Lu, S., Chen, Z., Lourenco, R. & Chiang, V.L. Genetic transformation of Populus trichocarpa genotype Nisqually-1: a functional genomic tool for woody plants. Plant Cell Physiol. 47, 1582–1589 (2006).

    Article  CAS  Google Scholar 

  11. Chen, H. et al. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis. Proc. Natl. Acad. Sci. USA 108, 21253–21258 (2011).

    Article  CAS  Google Scholar 

  12. Leinhos, V. & Savidge, R.A. Isolation of protoplasts from developing xylem of Pinus banksiana and Pinus strobus. Can. J. For. Res. 23, 343–348 (1993).

    Article  Google Scholar 

  13. Ahuja, M.R. Protoplast research in woody plants. Silvae Genet. 33, 32–37 (1984).

    Google Scholar 

  14. Teulieres, C., Grima-Pettenati, J., Curie, C., Teissie, J. & Boudet, A.M. Transient foreign gene expression in polyethylene/glycol treated or electropulsated Eucalyptus gunnii protoplasts. Plant Cell Tissue Organ Cult. 25, 125–132 (1991).

    Google Scholar 

  15. Manders, G., Dossantos, A.V.P., Vaz, F.B.D., Davey, M.R. & Power, J.B. Transient gene-expression in electroporated protoplasts of Eucalyptuscitriodora hook. Plant Cell Tissue Organ Cult. 30, 69–75 (1992).

    Article  CAS  Google Scholar 

  16. Puite, K.J. Progress in plant protoplast research. Physiol. Plant. 85, 403–410 (1992).

    Article  Google Scholar 

  17. Sun, J. et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol. 149, 1141–1153 (2009).

    Article  CAS  Google Scholar 

  18. Tang, R. et al. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74, 367–380 (2010).

    Article  CAS  Google Scholar 

  19. Gomez-Maldonado, J., Crespillo, R., Avila, C. & Canovas, F.M. Efficient preparation of maritime pine (Pinus pinaster) protoplasts suitable for transgene expression analysis. Plant Mol. Biol. Rep. 19, 361–366 (2001).

    Article  CAS  Google Scholar 

  20. Harms, C.T. & Potrykus, I. Hormone-inhibition of Citrus protoplasts released by co-culturing with Nicotiana tabacum protoplasts–its significance for somatic hybrid selection. Plant Sci. Lett. 19, 295–301 (1980).

    Article  CAS  Google Scholar 

  21. Cocking, E.C. Plant cell protoplasts–isolation and development. Annu. Rev. Plant. Physiol. 23, 29–50 (1972).

    Article  CAS  Google Scholar 

  22. Yoo, S., Cho, Y. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Article  CAS  Google Scholar 

  23. Tan, B., Xu, M., Chen, Y. & Huang, M. Transient expression for functional gene analysis using Populus protoplasts. Plant Cell Tissue Organ Cult. 114, 11–18 (2013).

    Article  CAS  Google Scholar 

  24. Wu, F. et al. Tape-Arabidopsis sandwich–a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16 (2009).

    Article  Google Scholar 

  25. Guo, J. et al. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS ONE 7, e44908 (2012).

    Article  CAS  Google Scholar 

  26. Kanwar, K., Bhardwaj, A. & Deepika, R. Efficient regeneration of plantlets from callus and mesophyll derived protoplasts of Robinia pseudoacacia L. Plant Cell Tissue Organ Cult. 96, 95–103 (2009).

    Article  Google Scholar 

  27. Zhang, Y. et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30 (2011).

    Article  CAS  Google Scholar 

  28. Hong, S.Y., Seo, P.J., Cho, S.H. & Park, C.M. Preparation of leaf mesophyll protoplasts for transient gene expression in Brachypodium distachyon. J. Plant Biol. 55, 390–397 (2012).

    Article  CAS  Google Scholar 

  29. Meyer, L., Serek, M. & Winkelmann, T. Protoplast isolation and plant regeneration of different genotypes of Petunia and Calibrachoa. Plant Cell Tissue Organ Cult. 99, 27–34 (2009).

    Article  Google Scholar 

  30. Lung, S., Yanagisawa, M. & Chuong, S.D.X. Protoplast isolation and transient gene expression in the single-cell C4 species, Bienertia sinuspersici. Plant. Cell Rep. 30, 473–484 (2011).

    Article  CAS  Google Scholar 

  31. Tuskan, G.A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).

    Article  CAS  Google Scholar 

  32. Lockhart, J. Breaking down the complex regulatory web underlying lignin biosynthesis. Plant Cell 25, 4282 (2013).

    Article  CAS  Google Scholar 

  33. Sheen, J. Signal transduction in Maize and Arabidopsis mesophyll protoplasts. Plant Physiol. 127, 1466–1475 (2001).

    Article  CAS  Google Scholar 

  34. Birnbaum, K. et al. A gene expression map of the Arabidopsis root. Science 302, 1956–1960 (2003).

    Article  CAS  Google Scholar 

  35. Faraco, M., Sansebastiano, G.P.D., Spelt, K., Koes, R.E. & Quattrocchio, F.M. One protoplast is not the other. Plant Physiol. 156, 474–478 (2011).

    Article  CAS  Google Scholar 

  36. Chupeau, M. et al. Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. Plant Cell 25, 2444–2463 (2013).

    Article  CAS  Google Scholar 

  37. Fujii, H. et al. In vitro reconstitution of an abscisic acid signaling pathway. Nature 462, 660–664 (2009).

    Article  CAS  Google Scholar 

  38. Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584 (2013).

    Article  CAS  Google Scholar 

  39. Amborella Genome Project. The Amborella genome and the evolution of flowering plants. Science 342, 1241089 (2013).

  40. Courtois-Moreau, C.L. et al. A unique program for cell death in xylem fibers of Populus stem. Plant J. 58, 260–274 (2009).

    Article  CAS  Google Scholar 

  41. Li, L. et al. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13, 1567–1585 (2001).

    Article  CAS  Google Scholar 

  42. Li, L. et al. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc. Natl. Acad. Sci. USA 100, 4939–4944 (2003).

    Article  CAS  Google Scholar 

  43. Lu, S., Zhou, Y., Li, L. & Chiang, V.L. Distinct roles of cinnamate 4-hydroxylase genes in Populus. Plant Cell Physiol. 47, 905–914 (2006).

    Article  CAS  Google Scholar 

  44. Lu, S., Li, L., Yi, X., Joshi, C.P. & Chiang, V.L. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress. J. Exp. Bot. 59, 681–695 (2008).

    Article  CAS  Google Scholar 

  45. Li, J., Li, L. & Sheen, J. Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology. Plant Methods 6, 1 (2010).

    Article  Google Scholar 

  46. Miao, Y. & Jiang, L. Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat. Protoc. 2, 2348–2353 (2007).

    Article  CAS  Google Scholar 

  47. Nelson, B.K., Cai, X. & Nebenfuehr, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).

    Article  CAS  Google Scholar 

  48. Sambrook, J. & Fritsch, E.F. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press (1989).

  49. Schroeder, A. et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 3 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Science (Biological and Environmental Research), US Department of Energy grant DE-SC000691 (to V.L.C.). We also thank the North Carolina State University Jordan Family Distinguished Professor Endowment for support.

Author information

Authors and Affiliations

Authors

Contributions

Y.-C.L., W.L., Q.L., Y.-H.S. and V.L.C. designed the experiment. Y.-C.L., W.L., H.C., Q.L., R.S., C.-Y.L., J.P.W., H.-C.C. and L.C. performed the experiments. Y.-C.L., W.L., Q.L., Y.-H.S. and V.L.C. analyzed the data. R.R.S., L.C. and G.-Z.Q. edited the manuscript. Y.-C.L., W.L. and V.L.C. wrote the paper. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Vincent L Chiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Optimization of PEG-Mediated P. trichocarpa SDX Protoplast DNA Transfection (PDF 108 kb)

Footnotes: an represents the number of biological replicates of transfection efficiency test (see PROCEDURE) for each set of conditions. bThe optimized SDX protoplast transfection condition used for all PtrSND1-B1 overexpression experiments. Supplementary Table 1 was adapted from ref. 7 with permission from http://www.plantcell.org, Copyright American Society of Plant Biologists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Li, W., Chen, H. et al. A simple improved-throughput xylem protoplast system for studying wood formation. Nat Protoc 9, 2194–2205 (2014). https://doi.org/10.1038/nprot.2014.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.147

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing