Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model

Abstract

Cell migration through 3D extracellular matrices (ECMs) is crucial to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. The motility of eukaryotic cells on 2D substrates in the absence of gradients has long been described using persistent random walks (PRWs). Recent work shows that 3D migration is anisotropic and features an exponential mean cell velocity distribution, rendering the PRW model invalid. Here we present a protocol for the analysis of 3D cell motility using the anisotropic PRW model. The software, which is implemented in MATLAB, enables statistical profiling of experimentally observed 2D and 3D cell trajectories, and it extracts the persistence and speed of cells along primary and nonprimary directions and an anisotropic index of migration. Basic computer skills and experience with MATLAB software are recommended for successful use of the protocol. This protocol is highly automated and fast, taking <30 min to analyze trajectory data per biological condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of cell migration inside a 3D matrix.
Figure 2: Computer simulations of cell trajectories using the APRW and PRW models.
Figure 3: Statistical analysis of simulated trajectories.
Figure 4: 3D cell migration parameters obtained via the APRW and PRW models.

Similar content being viewed by others

References

  1. Pollard, T.D. & Borisy, G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  2. Lauffenburger, D.A. & Horwitz, A.F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  3. Ridley, A.J. et al. Cell migration: Integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  4. Jin, H. & Varner, J. Integrins: roles in cancer development and as treatment targets. Br. J. Cancer 90, 561–565 (2004).

    Article  CAS  Google Scholar 

  5. Wirtz, D., Konstantopoulos, K. & Searson, P.C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    Article  CAS  Google Scholar 

  6. Luster, A.D., Alon, R. & von Andrian, U.H. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005).

    Article  CAS  Google Scholar 

  7. Martin, P. Wound healing: aiming for perfect skin regeneration. Science 276, 75–81 (1997).

    Article  CAS  Google Scholar 

  8. Tranquillo, R.T., Lauffenburger, D.A. & Zigmond, S.H. A stochastic model for leukocyte random motility and chemotaxis based on receptor-binding fluctuations. J. Cell Biol. 106, 303–309 (1988).

    Article  CAS  Google Scholar 

  9. Tranquillo, R.T. & Lauffenburger, D.A. Stochastic model of leukocyte chemosensory movement. J. Math. Biol. 25, 229–262 (1987).

    Article  CAS  Google Scholar 

  10. Stokes, C.L., Lauffenburger, D.A. & Williams, S.K. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci. 99, 419–430 (1991).

    PubMed  Google Scholar 

  11. Stokes, C.L. & Lauffenburger, D.A. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991).

    Article  CAS  Google Scholar 

  12. Parkhurst, M.R. & Saltzman, W.M. Quantification of human neutrophil motility in 3-dimensional collagen gels: effect of collagen concentration. Biophys. J. 61, 306–315 (1992).

    Article  CAS  Google Scholar 

  13. Berg, H.C. Random Walks in Biology (Princeton University Press, 1993).

  14. Czirok, A., Schlett, K., Madarasz, E. & Vicsek, T. Exponential distribution of locomotion activity in cell cultures. Phys. Rev. Lett. 81, 3038–3041 (1998).

    Article  CAS  Google Scholar 

  15. Takagi, H., Sato, M.J., Yanagida, T. & Ueda, M. Functional analysis of spontaneous cell movement under different physiological conditions. PLoS ONE 3 e2648 (2008).

  16. Selmeczi, D., Mosler, S., Hagedorn, P.H., Larsen, N.B. & Flyvbjerg, H. Cell motility as persistent random motion: theories from experiments. Biophys J. 89, 912–931 (2005).

    Article  CAS  Google Scholar 

  17. Fraley, S.I. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. 12, 598–604 (2010).

    Article  CAS  Google Scholar 

  18. Fraley, S.I., Feng, Y., Giri, A., Longmore, G.D. & Wirtz, D. Dimensional and temporal controls of three-dimensional cell migration by zyxin and binding partners. Nat. Commun. 3, 719 (2012).

    Article  Google Scholar 

  19. Giri, A. et al. The Arp2/3 complex mediates multigeneration dendritic protrusions for efficient 3-dimensional cancer cell migration. FASEB J. 27, 4089–4099 (2013).

    Article  CAS  Google Scholar 

  20. Tang, H. et al. Loss of Scar/WAVE complex promotes N-WASP- and FAK-dependent invasion. Curr. Biol. 23, 107–117 (2013).

    Article  CAS  Google Scholar 

  21. Yu, X. & Machesky, L.M. Cells assemble invadopodia-like structures and invade into Matrigel in a matrix metalloprotease dependent manner in the circular invasion assay. PLoS ONE 7, e30605 (2012).

    Article  CAS  Google Scholar 

  22. Zaman, M.H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA 103, 10889–10894 (2006).

    Article  CAS  Google Scholar 

  23. Khatau, S.B. et al. The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci. Rep. 2, 488 (2012).

    Article  Google Scholar 

  24. Gilkes, D.M. et al. Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc. Natl. Acad. Sci. USA 111, E384–393 (2014).

    Article  CAS  Google Scholar 

  25. Kim, D.H. & Wirtz, D. Focal adhesion size uniquely predicts cell migration. FASEB J. 27, 1351–1361 (2013).

    Article  CAS  Google Scholar 

  26. Friedl, P., Sahai, E., Weiss, S. & Yamada, K.M. New dimensions in cell migration. Nat. Rev. Mol. Cell Biol. 13, 743–747 (2012).

    Article  CAS  Google Scholar 

  27. Wu, P.H., Giri, A., Sun, S.X. & Wirtz, D. Three-dimensional cell migration does not follow a random walk. Proc. Natl. Acad. Sci. USA 111, 3949–3954 (2014).

    Article  CAS  Google Scholar 

  28. Hung, W.C. et al. Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J. Cell Biol. 202, 807–824 (2013).

    Article  CAS  Google Scholar 

  29. Stroka, K.M. et al. Water permeation drives tumor cell migration in confined microenvironments. Cell 157, 611–623 (2014).

    Article  CAS  Google Scholar 

  30. Ehrbar, M. et al. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys. J. 100, 284–293 (2011).

    Article  CAS  Google Scholar 

  31. Kutys, M.L. & Yamada, K.M. An extracellular-matrix-specific GEE GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration. Nat. Cell Biol. 16, 909–917 (2014).

    Article  CAS  Google Scholar 

  32. Pankov, R. et al. A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170, 793–802 (2005).

    Article  CAS  Google Scholar 

  33. Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).

    Article  CAS  Google Scholar 

  34. Wu, P.H., Arce, S.H., Burney, P.R. & Tseng, Y. A novel approach to high accuracy of video-based microrheology. Biophys. J. 96, 5103–5111 (2009).

    Article  CAS  Google Scholar 

  35. Wu, P.H. et al. High-throughput ballistic injection nanorheology to measure cell mechanics. Nat. Protoc. 7, 155–170 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institutes of Health grant U54CA143868.

Author information

Authors and Affiliations

Authors

Contributions

A.G. conducted the experiments; P.-H.W. developed, tested, applied and validated the APRW model; and A.G., P.-H.W. and D.W. designed the experiments, analyzed the results and wrote the paper.

Corresponding authors

Correspondence to Pei-Hsun Wu or Denis Wirtz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods (PDF 188 kb)

Supplementary Software

Contains MATLAB scripts. (ZIP 21 kb)

Supplementary Data

Contains example excel sheets (ZIP 3455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PH., Giri, A. & Wirtz, D. Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat Protoc 10, 517–527 (2015). https://doi.org/10.1038/nprot.2015.030

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.030

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing