Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Global, in situ, site-specific analysis of protein S-sulfenylation

Abstract

Protein S-sulfenylation is the reversible oxidative modification of cysteine thiol groups to form cysteine S-sulfenic acids. Mapping the specific sites of protein S-sulfenylation onto complex proteomes is crucial to understanding the molecular mechanisms controlling redox signaling and regulation. This protocol describes global, in situ, site-specific analysis of protein S-sulfenylation using sulfenic acid–specific chemical probes and mass spectrometry (MS)-based proteomics. The major steps in this protocol are as follows: (i) optimization of conditions for selective labeling of cysteine S-sulfenic acids in intact cells with the commercially available dimedone-based probe, DYn-2; (ii) tagging the modified cysteines with a functionalized biotin reagent containing a cleavable linker via Cu(I)-catalyzed azide-alkyne cycloaddition reaction; (iii) enrichment of the biotin-tagged tryptic peptides with streptavidin; (iv) liquid chromatography-tandem MS (LC-MS/MS)-based shotgun proteomics; and (v) computational data analysis. We also outline strategies for quantitative analysis of this modification in cells responding to redox perturbations and discuss special issues pertaining to experimental design of thiol redox studies. Our chemoproteomic platform should be broadly applicable to the investigation of other bio-orthogonal chemically engineered post-translational modifications. The entire analysis protocol takes 1 week to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective labeling and detection of protein S-sulfenic acid in cells.
Figure 2: Two workflows for proteome-wide identification of targeted sites of alkyne-tagged probes.
Figure 3: Identification of Cys238 of NAA15 as the target of S-sulfenylation in RKO cells.
Figure 4: Identification of two cysteine residues of GAPDH as the targets of S-sulfenylation in RKO cells.
Figure 5: Quantitative S-sulfenylome analysis.

Similar content being viewed by others

References

  1. Roos, G. & Messens, J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic. Biol. Med. 51, 314–326 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Poole, L.B. & Nelson, K.J. Discovering mechanisms of signaling-mediated cysteine oxidation. Curr. Opin. Chem. Biol. 12, 18–24 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kettenhofen, N.J. & Wood, M.J. Formation, reactivity, and detection of protein sulfenic acids. Chem. Res. Toxicol. 23, 1633–1646 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gupta, V. & Carroll, K.S. Sulfenic acid chemistry, detection and cellular lifetime. Biochim. Biophys. Acta 1840, 847–875 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, S.R., Kwon, K.S., Kim, S.R. & Rhee, S.G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366–15372 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. van Montfort, R.L., Congreve, M., Tisi, D., Carr, R. & Jhoti, H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423, 773–777 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sobotta, M.C. et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Guo, Z., Kozlov, S., Lavin, M.F., Person, M.D. & Paull, T.T. ATM activation by oxidative stress. Science 330, 517–521 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 80, 148–157 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Claiborne, A., Miller, H., Parsonage, D. & Ross, R.P. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J. 7, 1483–1490 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Willett, W.S. & Copley, S.D. Identification and localization of a stable sulfenic acid in peroxide-treated tetrachlorohydroquinone dehalogenase using electrospray mass spectrometry. Chem. Biol. 3, 851–857 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Depuydt, M. et al. A periplasmic reducing system protects single cysteine residues from oxidation. Science 326, 1109–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Wood, Z.A., Poole, L.B. & Karplus, P.A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650–653 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Paulsen, C.E. & Carroll, K.S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 113, 4633–4679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brandes, N. et al. Time line of redox events in aging postmitotic cells. Elife 2, e00306 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rosenwasser, S. et al. Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment. Proc. Natl. Acad. Sci. USA 111, 2740–2745 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Su, D. et al. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. Free Radic. Biol. Med. 67, 460–470 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Santamarina, S. et al. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nat. Protoc. 9, 1131–1145 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Derakhshan, B., Wille, P.C. & Gross, S.S. Unbiased identification of cysteine S-nitrosylation sites on proteins. Nat. Protoc. 2, 1685–1691 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Hao, G., Derakhshan, B., Shi, L., Campagne, F. & Gross, S.S. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc. Natl. Acad. Sci. USA 103, 1012–1017 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leichert, L.I. et al. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. USA 105, 8197–8202 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo, J. et al. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nat. Protoc. 9, 64–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Su, D. et al. Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry. Free Radic. Biol. Med. 57, 68–78 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Brandes, N., Reichmann, D., Tienson, H., Leichert, L.I. & Jakob, U. Using quantitative redox proteomics to dissect the yeast redoxome. J. Biol. Chem. 286, 41893–41903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Devarie Baez, N.O., Reisz, J.A. & Furdui, C.M. Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats. Free Radic. Biol. Med. 80, 191–211 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  27. Reisz, J.A., Bechtold, E., King, S.B., Poole, L.B. & Furdui, C.M. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J. 280, 6150–6161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Benitez, L.V. & Allison, W.S. The inactivation of the acyl phosphatase activity catalyzed by the sulfenic acid form of glyceraldehyde 3-phosphate dehydrogenase by dimedone and olefins. J. Biol. Chem. 249, 6234–6243 (1974).

    Article  CAS  PubMed  Google Scholar 

  29. Poole, L.B. et al. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. Bioconjug. Chem. 18, 2004–2017 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wani, R. et al. Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc. Natl. Acad. Sci. USA 108, 10550–10555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paulsen, C.E. et al. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 8, 57–64 (2012).

    Article  CAS  Google Scholar 

  32. Truong, T.H. & Carroll, K.S. Bioorthogonal chemical reporters for analyzing protein sulfenylation in cells. Curr. Protoc. Chem. Biol. 4, 101–122 (2012).

    Article  Google Scholar 

  33. Kulathu, Y. et al. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat. Commun. 4, 1569 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, J., Gupta, V., Carroll, K.S. & Liebler, D.C. Site-specific mapping and quantification of protein S-sulfenylation in cells. Nat. Commun. 5, 4776 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, H.Y., Tallman, K.A., Liebler, D.C. & Porter, N.A. An azido-biotin reagent for use in the isolation of protein adducts of lipid-derived electrophiles by streptavidin catch and photorelease. Mol. Cell. Proteomics 8, 2080–2089 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, Z. et al. Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol. Cell. Proteomics 9, 153–160 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Speers, A.E. & Cravatt, B.F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc. 127, 10018–10019 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weerapana, E., Speers, A.E. & Cravatt, B.F. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat. Protoc. 2, 1414–1425 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, T., Jiang, H. & Wu, P. Single-stranded DNA as a cleavable linker for bioorthogonal click chemistry-based proteomics. Bioconjug. Chem. 24, 859–864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szychowski, J. et al. Cleavable biotin probes for labeling of biomolecules via azide-alkyne cycloaddition. J. Am. Chem. Soc. 132, 18351–18360 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qian, Y. et al. An isotopically tagged azobenzene-based cleavable linker for quantitative proteomics. Chembiochem 14, 1410–1414 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Hulce, J.J., Cognetta, A.B., Niphakis, M.J., Tully, S.E. & Cravatt, B.F. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10, 259–264 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Codreanu, S.G., Zhang, B., Sobecki, S.M., Billheimer, D.D. & Liebler, D.C. Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal. Mol. Cell. Proteomics 8, 670–680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Codreanu, S.G. et al. Alkylation damage by lipid electrophiles targets functional protein systems. Mol. Cell. Proteomics 13, 849–859 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lanning, B.R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martin, B.R. & Cravatt, B.F. Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6, 135–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin, B.R., Wang, C., Adibekian, A., Tully, S.E. & Cravatt, B.F. Global profiling of dynamic protein palmitoylation. Nat. Methods 9, 84–89 (2012).

    Article  CAS  Google Scholar 

  48. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, C., Weerapana, E., Blewett, M.M. & Cravatt, B.F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat. Methods 11, 79–85 (2014).

    Article  PubMed  CAS  Google Scholar 

  50. Deng, X. et al. Proteome-wide quantification and characterization of oxidation-sensitive cysteines in pathogenic bacteria. Cell Host Microbe 13, 358–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Presolski, S.I., Hong, V., Cho, S.H. & Finn, M.G. Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J. Am. Chem. Soc. 132, 14570–14576 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin, D., Li, J., Slebos, R.J. & Liebler, D.C. Cysteinyl peptide capture for shotgun proteomics: global assessment of chemoselective fractionation. J. Proteome Res. 9, 5461–5472 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martinez-Acedo, P., Gupta, V. & Carroll, K.S. Proteomic analysis of peptides tagged with dimedone and related probes. J. Mass Spectrom. 49, 257–265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mertins, P. et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat. Methods 10, 634–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alfaro, J.F. et al. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc. Natl. Acad. Sci. USA 109, 7280–7285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Doulias, P.T. et al. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc. Natl. Acad. Sci. USA 107, 16958–16963 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Glatter, T. et al. Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J. Proteome Res. 11, 5145–5156 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Guo, X., Trudgian, D.C., Lemoff, A., Yadavalli, S. & Mirzaei, H. Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics. Mol. Cell. Proteomics 13, 1573–1584 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huesgen, P.F. et al. LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat. Methods 12, 55–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Besanceney-Webler, C. et al. Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew. Chem. Int. Ed. Engl. 50, 8051–8056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, W. et al. Sulfated ligands for the copper(I)-catalyzed azide-alkyne cycloaddition. Chem. Asian J. 6, 2796–2802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olsen, J.V. et al. Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 4, 709–712 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Ma, Z.Q. et al. Supporting tool suite for production proteomics. Bioinformatics 27, 3214–3215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Holman, J.D., Ma, Z.Q. & Tabb, D.L. Identifying proteomic LC-MS/MS data sets with Bumbershoot and IDPicker. Curr. Protoc. Bioinform. 37, 13.17.1–13.17.15 (2012).

    Article  Google Scholar 

  66. Holman, J.D., Dasari, S. & Tabb, D.L. Informatics of protein and posttranslational modification detection via shotgun proteomics. Methods Mol. Biol. 1002, 167–179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tabb, D.L., Ma, Z.Q., Martin, D.B., Ham, A.J. & Chambers, M.C. DirecTag: accurate sequence tags from peptide MS/MS through statistical scoring. J. Proteome Res. 7, 3838–3846 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dasari, S. et al. TagRecon: high-throughput mutation identification through sequence tagging. J. Proteome Res. 9, 1716–1726 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma, Z.Q. et al. IDPicker 2.0: improved protein assembly with high discrimination peptide identification filtering. J. Proteome Res. 8, 3872–3881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tabb, D.L., Friedman, D.B. & Ham, A.J. Verification of automated peptide identifications from proteomic tandem mass spectra. Nat. Protoc. 1, 2213–2222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, Y., Kwon, S.W., Kim, S.C. & Zhao, Y. Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra. J. Proteome Res. 4, 998–1005 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Schilling, B. et al. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol. Cell. Proteomics 11, 202–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Grammel, M. & Hang, H.C. Chemical reporters for biological discovery. Nat. Chem. Biol. 9, 475–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Simon, G.M., Niphakis, M.J. & Cravatt, B.F. Determining target engagement in living systems. Nat. Chem. Biol. 9, 200–205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants U24CA159988 and R01GM102187.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. designed the protocol, optimized experimental conditions for applications and wrote the manuscript; V.G. synthesized the DYn-2-d6; K.A.T. synthesized Az-UV-biotin; and N.A.P., K.S.C. and D.C.L. supervised the project and edited the manuscript.

Corresponding authors

Correspondence to Jing Yang or Daniel C Liebler.

Ethics declarations

Competing interests

D.C.L. is a stockholder in Protypia, Incorporated.

Integrated supplementary information

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Discussion (PDF 1404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Gupta, V., Tallman, K. et al. Global, in situ, site-specific analysis of protein S-sulfenylation. Nat Protoc 10, 1022–1037 (2015). https://doi.org/10.1038/nprot.2015.062

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.062

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research