Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Citrobacter rodentium mouse model of bacterial infection

Abstract

Infection of mice with Citrobacter rodentium is a robust model to study bacterial pathogenesis, mucosal immunology, the health benefits of probiotics and the role of the microbiota during infection. C. rodentium was first isolated by Barthold from an outbreak of mouse diarrhea in Yale University in 1972 and was 'rediscovered' by Falkow and Schauer in 1993. Since then the use of the model has proliferated, and it is now the gold standard for studying virulence of the closely related human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Here we provide a detailed protocol for various applications of the model, including bacterial growth, site-directed mutagenesis, mouse inoculation (from cultured cells and after cohabitation), monitoring of bacterial colonization, tissue extraction and analysis, immune responses, probiotic treatment and microbiota analysis. The main protocol, from mouse infection to clearance and analysis of tissues and host responses, takes 5 weeks to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protocol workflow.
Figure 2: Schematic representation of the generation of C. rodentium chromosomal deletion mutant.
Figure 3: In vitro organ cultures.
Figure 7: H&E and immunofluorescence staining.
Figure 6: Recruitment of immune cells during C. rodentium infection.
Figure 4: Attaching and effacing lesions.
Figure 5: C. rodentium colonization dynamics and imaging.

Similar content being viewed by others

References

  1. Crepin, V.F. et al. Tir triggers expression of CXCL1 in enterocytes and neutrophil recruitment during Citrobacter rodentium Infection. Infect. Immun. 83, 3342–3354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hemrajani, C. et al. Role of NleH, a type III secreted effector from attaching and effacing pathogens, in colonization of the bovine, ovine, and murine gut. Infect. Immun. 76, 4804–4813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mundy, R. et al. Identification of a novel type IV pilus gene cluster required for gastrointestinal colonization of Citrobacter rodentium. Mol. Microbiol. 48, 795–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Pearson, J.S. et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501, 247–251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wong, A.R. et al. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol. Microbiol. 80, 1420–1438 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Nataro, J.P. & Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142–201 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Riley, L.W. et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308, 681–685 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Collins, J.W. et al. Citrobacter rodentium: infection, inflammation and the microbiota. Nat. Rev. Microbiol. 12, 612–623 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Mundy, R., Girard, F., FitzGerald, A.J. & Frankel, G. Comparison of colonization dynamics and pathology of mice infected with enteropathogenic Escherichia coli, enterohaemorrhagic E. coli and Citrobacter rodentium. FEMS Microbiol. Lett. 265, 126–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Mundy, R., MacDonald, T.T., Dougan, G., Frankel, G. & Wiles, S. Citrobacter rodentium of mice and man. Cell Microbiol. 7, 1697–1706 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Bhinder, G. et al. The Citrobacter rodentium mouse model: studying pathogen and host contributions to infectious colitis. J. Vis. Exp. e50222 (2013).

  12. Borenshtein, D., McBee, M.E. & Schauer, D.B. Utility of the Citrobacter rodentium infection model in laboratory mice. Curr. Opin. Gastroenterol. 24, 32–37 (2008).

    Article  PubMed  Google Scholar 

  13. Girard, F., Dziva, F., Stevens, M.P. & Frankel, G. Interaction of typical and atypical enteropathogenic Escherichia coli with the calf intestinal mucosa ex vivo. Appl. Environ. Microbiol. 75, 5991–5995 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luperchio, S.A. et al. Citrobacter rodentium, the causative agent of transmissible murine colonic hyperplasia, exhibits clonality: synonymy of C. rodentium and mouse-pathogenic Escherichia coli. J. Clin. Microbiol. 38, 4343–4350 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luperchio, S.A. & Schauer, D.B. Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect. 3, 333–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. MacDonald, T.T., Frankel, G., Dougan, G., Goncalves, N.S. & Simmons, C. Host defences to Citrobacter rodentium. Int. J. Med. Microbiol. 293, 87–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Mallick, E.M. et al. A novel murine infection model for Shiga toxin-producing Escherichia coli. J. Clin. Invest. 122, 4012–4024 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geddes, K. et al. Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat. Med. 17, 837–844 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Lupfer, C.R. et al. Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection. PLoS Pathog. 10, e1004410 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Song-Zhao, G.X. et al. Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen. Mucosal. Immunol. 7, 763–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Wlodarska, M. et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156, 1045–1059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cantey, J.R. & Blake, R.K. Diarrhea due to Escherichia coli in the rabbit: a novel mechanism. J. Infect. Dis. 135, 454–462 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. Agin, T.S., Cantey, J.R., Boedeker, E.C. & Wolf, M.K. Characterization of the eaeA gene from rabbit enteropathogenic Escherichia coli strain RDEC-1 and comparison to other eaeA genes from bacteria that cause attaching-effacing lesions. FEMS Microbiol. Lett. 144, 249–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Cantey, J.R. & Inman, L.R. Diarrhea due to Escherichia coli strain RDEC-1 in the rabbit: the peyer′s patch as the initial site of attachment and colonization. J. Inect. Dis. 143, 440–446 (1981).

    Article  CAS  Google Scholar 

  27. Cantey, J.R., Inman, L.R. & Blake, R.K. Production of diarrhea in the rabbit by a mutant of Escherichia coli (RDEC-1) that does not express adherence (AF/R1) pili. J. Infect. Dis. 160, 136–141 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Inman, L.R. & Cantey, J.R. Peyer's patch lymphoid follicle epithelial adherence of a rabbit enteropathogenic Escherichia coli (strain RDEC-1). Role of plasmid-mediated pili in initial adherence. J. Clin. Invest. 74, 90–95 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Horne, C., Vallance, B.A., Deng, W. & Finlay, B.B. Current progress in enteropathogenic and enterohemorrhagic Escherichia coli vaccines. Expert Rev. Vaccines 1, 483–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Ritchie, J.M. et al. EspFU, a type III-translocated effector of actin assembly, fosters epithelial association and late-stage intestinal colonization by E. coli O157:H7. Cell Microbiol. 10, 836–847 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Ritchie, J.M. & Waldor, M.K. The locus of enterocyte effacement-encoded effector proteins all promote enterohemorrhagic Escherichia coli pathogenicity in infant rabbits. Infect. Immun. 73, 1466–1474 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dean-Nystrom, E.A., Bosworth, B.T., Cray, W.C.J. & Moon, H.W. Pathogenicity of Escherichia coli O157:H7 in the intestines of neonatal calves. Infect. Immun. 65, 1842–1848 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoffman, M.A. et al. Bovine immune response to shiga-toxigenic Escherichia coli O157:H7. Clin. Vaccine Immunol. 13, 1322–1327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Allen, K.J., Rogan, D., Finlay, B.B., Potter, A.A. & Asper, D.J. Vaccination with type III secreted proteins leads to decreased shedding in calves after experimental infection with Escherichia coli O157. Can. J. Vet. Res. 75, 98–105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Potter, A.A. et al. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 22, 362–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Tachikawa, T. et al. Estimation of probiotics by infection model of infant rabbit with enterohemorrhagic Escherichia coli O157:H7. Kansenshogaku Zasshi 72, 1300–1305 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Tzipori, S. et al. Enteropathogenic Escherichia coli enteritis: evaluation of the gnotobiotic piglet as a model of human infection. Gut 26, 570–578 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tzipori, S. et al. The pathogenesis of hemorrhagic colitis caused by Escherichia coli O157:H7 in gnotobiotic piglets. J. Infect. Dis. 154, 712–716 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Dean-Nystrom, E.A., Gansheroff, L.J., Mills, M., Moon, H.W. & O'Brien, A.D. Vaccination of pregnant dams with intimin(O157) protects suckling piglets from Escherichia coli O157:H7 infection. Infect. Immun. 70, 2414–2418 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Curtis, M.M. et al. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe 16, 759–769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ghosh, S. et al. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G39–G49 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kamada, N. et al. Humoral immunity in the gut selectively targets phenotypically virulent attaching-and-effacing bacteria for intraluminal elimination. Cell Host Microbe 17, 617–627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chandrakesan, P. et al. Utility of a bacterial infection model to study epithelial-mesenchymal transition, mesenchymal-epithelial transition or tumorigenesis. Oncogene 33, 2639–2654 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Frankel, G. et al. Intimin from enteropathogenic Escherichia coli restores murine virulence to a Citrobacter rodentium eaeA mutant: induction of an immunoglobulin A response to intimin and EspB. Infect. Immun. 64, 5315–5325 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barthold, S.W., Coleman, G.L., Bhatt, P.N., Osbaldiston, G.W. & Jonas, A.M. The etiology of transmissible murine colonic hyperplasia. Lab. Anim. Sci. 26, 889–894 (1976).

    CAS  PubMed  Google Scholar 

  47. Schauer, D.B. & Falkow, S. Attaching and effacing locus of a Citrobacter freundii biotype that causes transmissible murine colonic hyperplasia. Infect. Immun. 61, 2486–2492 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petty, N.K. et al. The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. J. Bacteriol. 192, 525–538 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lenz, A., Tomkins, J. & Fabich, A.J. Draft genome sequence of Citrobacter rodentium DBS100 (ATCC 51459), a primary model of enterohemorrhagic Escherichia coli virulence. Genome Announc. 3, 15 (2015).

    Article  Google Scholar 

  50. Vallance, B.A., Deng, W., Jacobson, K. & Finlay, B.B. Host susceptibility to the attaching and effacing bacterial pathogen Citrobacter rodentium. Infect. Immun. 71, 3443–3453 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Papapietro, O. et al. R-spondin 2 signalling mediates susceptibility to fatal infectious diarrhoea. Nat. Commun. 4, 1898 (2013).

    Article  PubMed  CAS  Google Scholar 

  52. Wiles, S., Dougan, G. & Frankel, G. Emergence of a 'hyperinfectious' bacterial state after passage of Citrobacter rodentium through the host gastrointestinal tract. Cell Microbiol. 7, 1163–1172 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Wiles, S. et al. Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium. Cell Microbiol. 6, 963–972 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Collins, J.W., Meganck, J.A., Kuo, C., Francis, K.P. & Frankel, G. 4D multimodality imaging of Citrobacter rodentium infections in mice. J. Vis. Exp. 78, e50450 (2013).

    Google Scholar 

  55. Hirata, Y., Egea, L., Dann, S.M., Eckmann, L. & Kagnoff, M.F. GM-CSF-facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen. Cell Host Microbe 7, 151–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spehlmann, M.E. et al. CXCR2-dependent mucosal neutrophil influx protects against colitis-associated diarrhea caused by an attaching/effacing lesion-forming bacterial pathogen. J. Immunol. 183, 3332–3343 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Hall, L.J. et al. Natural killer cells protect against mucosal and systemic infection with the enteric pathogen Citrobacter rodentium. Infect Immun. 81, 460–469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bergstrom, K.S. et al. Goblet cell derived RELM-beta recruits CD4+ T cells during infectious colitis to promote protective intestinal epithelial cell proliferation. PLoS Pathog. 11, e1005108 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Schreiber, H.A. et al. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J. Exp. Med. 210, 2025–2039 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seo, S.U. et al. Intestinal macrophages arising from CCR2(+) monocytes control pathogen infection by activating innate lymphoid cells. Nat. Commun. 6, 8010 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Lebeis, S.L., Sherman, M.A. & Kalman, D. Protective and destructive innate immune responses to enteropathogenic Escherichia coli and related A/E pathogens. Future Microbiol. 3, 315–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Gibson, D.L. et al. MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis. Cell Microbiol. 10, 618–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Bhinder, G. et al. Intestinal epithelium-specific MyD88 signaling impacts host susceptibility to infectious colitis by promoting protective goblet cell and antimicrobial responses. Infect. Immun. 82, 3753–3763 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Maaser, C. et al. Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infect. Immun. 72, 3315–3324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Simmons, C.P. et al. Central role for B lymphocytes and CD4+ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium. Infect. Immun. 71, 5077–5086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Hoffmann, C. et al. Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect. Immun. 77, 4668–4678 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Collins, J.W. et al. Fermented dairy products modulate Citrobacter rodentium-induced colonic hyperplasia. J. Infect. Dis. 210, 1029–1041 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, J., Waddell, A., Lin, Y.D. & Cantorna, M.T. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells. Mucosal Immunol. 8, 618–626 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Willing, B.P., Vacharaksa, A., Croxen, M., Thanachayanont, T. & Finlay, B.B. Altering host resistance to infections through microbial transplantation. PLoS One 6, e26988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pham, T.A. & Lawley, T.D. Emerging insights on intestinal dysbiosis during bacterial infections. Curr. Opin. Microbiol. 17, 67–74 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Winter, S.E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Winter, S.E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wiles, S., Pickard, K.M., Peng, K., MacDonald, T.T. & Frankel, G. In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium. Infect. Immun. 74, 5391–5396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Collins, J.W. et al. Pre-treatment with Bifidobacterium breve UCC2003 modulates Citrobacter rodentium-induced colonic inflammation and organ specificity. Microbiology 158, 2826–2834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schieber, A.M. et al. Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 350, 558–563 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M. & Altman, D.G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Crepin, V.F. et al. Dissecting the role of the Tir:Nck and Tir:IRTKS/IRSp53 signalling pathways in vivo. Mol. Microbiol. 75, 308–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Galan, J.E., Ginocchio, C. & Costeas, P. Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J. Bacteriol. 174, 4338–4349 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Girard, F. et al. Adherence of enterohemorrhagic Escherichia coli O157, O26, and O111 strains to bovine intestinal explants ex vivo. Appl. Environ. Microbiol. 73, 3084–3090 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Girard, F. et al. Modelling of infection by enteropathogenic Escherichia coli strains in lineages 2 and 4 ex vivo and in vivo by using Citrobacter rodentium expressing TccP. Infect. Immun. 77, 1304–1314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pereira, D.I., McCartney, A.L. & Gibson, G.R. An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Appl. Environ. Microbiol. 69, 4743–4752 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schmittgen, T.D. & Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ivanov, II et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Many of the protocols described in this manuscript were developed through grants from the Wellcome Trust and the Medical Research Council (MRC).

Author information

Authors and Affiliations

Authors

Contributions

V.F.C., J.W.C., M.H. and G.F. wrote the paper.

Corresponding author

Correspondence to Gad Frankel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crepin, V., Collins, J., Habibzay, M. et al. Citrobacter rodentium mouse model of bacterial infection. Nat Protoc 11, 1851–1876 (2016). https://doi.org/10.1038/nprot.2016.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.100

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing