Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Nonradioactive quantification of autophagic protein degradation with L-azidohomoalanine labeling

This article has been updated

Abstract

At present, several assays that use radioisotope labeling to quantify the degradation of long-lived proteins have been developed to measure autophagic flux. Here, we describe a nonradioactive pulse–chase protocol using L-azidohomoalanine (AHA) labeling to quantify long-lived protein degradation during autophagy. AHA is used as a surrogate for L-methionine, and, when added to cultured cells grown in methionine-free medium, AHA is incorporated into proteins during de novo protein synthesis. After a chase period to remove short-lived proteins, autophagy is induced by starvation or other stimuli. Cells then undergo a 'click' reaction between the azide group of AHA and a fluorescently tagged alkyne probe. The AHA-containing proteins can then be detected by flow cytometry. This protocol is nonradioactive, sensitive and quantitative, and it is easy to perform. It is also applicable to various cell culture systems. The whole protocol is estimated to take 4–5 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The click reaction between L-azidohomoalanine (AHA)-containing proteins and the fluorescently tagged alkyne probe.
Figure 2: General workflow for AHA labeling and determination of protein degradation induced by autophagy.
Figure 3: Autophagy induction increased long-lived protein degradation.

Similar content being viewed by others

Change history

  • 07 September 2017

    In the version of this article initially published, there was an error in Figure 1b. The structure of triazole, a 5-membered ring structure generated after the click reaction, was mistakenly drawn as a 6-membered ring. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  CAS  Google Scholar 

  2. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Feng, Y., He, D., Yao, Z. & Klionsky, D.J. The machinery of macroautophagy. Cell Res. 24, 24–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Chan, E.Y. & Tooze, S.A. Evolution of Atg1 function and regulation. Autophagy 5, 758–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Laplante, M. & Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jung, C.H., Ro, S.H., Cao, J., Otto, N.M. & Kim, D.H. mTOR regulation of autophagy. FEBS Lett. 584, 1287–1295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu, X.D. et al. Autophagy mediates HIF2α degradation and suppresses renal tumorigenesis. Oncogene 34, 2450–2460 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Shen, H.M. & Codogno, P. Autophagic cell death: Loch Ness monster or endangered species? Autophagy 7, 457–465 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ogier-Denis, E., Houri, J.J., Bauvy, C. & Codogno, P. Guanine nucleotide exchange on heterotrimeric Gi3 protein controls autophagic sequestration in HT-29 cells. J. Biol. Chem. 271, 28593–28600 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Roberts, E.A. & Deretic, V. Autophagic proteolysis of long-lived proteins in nonliver cells. Methods Mol. Biol. 445, 111–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Bauvy, C., Meijer, A.J. & Codogno, P. Assaying of autophagic protein degradation. Methods Enzymol. 452, 47–61 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Yewdell, J.W., Lacsina, J.R., Rechsteiner, M.C. & Nicchitta, C.V. Out with the old, in with the new? Comparing methods for measuring protein degradation. Cell Biol. Int. 35, 457–462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, Q. & Hoffman, R.M. Nonradioactive enzymatic assay for plasma and serum vitamin B(6). Nat. Protoc. 3, 1815–1819 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Hein, C.D., Liu, X.M. & Wang, D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res. 25, 2216–2230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moses, J.E. & Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Ullrich, M. et al. Bio-orthogonal labeling as a tool to visualize and identify newly synthesized proteins in Caenorhabditis elegans. Nat. Protoc. 9, 2237–2255 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Dieterich, D.C. et al. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat. Protoc. 2, 532–540 (2007).

    Article  PubMed  Google Scholar 

  23. Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A. & Schuman, E.M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 103, 9482–9487 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roth, S., Drewe, W.C. & Thomas, N.R. A concise and scalable route to L-azidohomoalanine. Nat. Protoc. 5, 1967–1973 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Link, A.J., Vink, M.K. & Tirrell, D.A. Preparation of the functionalizable methionine surrogate azidohomoalanine via copper-catalyzed diazo transfer. Nat. Protoc. 2, 1879–1883 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Millecamps, S. & Julien, J.P. [35S]Methionine metabolic labeling to study axonal transport of neuronal intermediate filament proteins in vivo. Methods Cell Biol. 78, 555–571 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Laughlin, S.T. & Bertozzi, C.R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat. Protoc. 2, 2930–2944 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Kachidian, P., Poulat, P., Marlier, L. & Privat, A. Immunohistochemical evidence for the coexistence of substance P, thyrotropin-releasing hormone, GABA, methionine-enkephalin, and leucin-enkephalin in the serotonergic neurons of the caudal raphe nuclei: a dual labeling in the rat. J. Neurosci. Res. 30, 521–530 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Dieterich, D.C. et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13, 897–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rosner, D., Schneider, T., Schneider, D., Scheffner, M. & Marx, A. Click chemistry for targeted protein ubiquitylation and ubiquitin chain formation. Nat. Protoc. 10, 1594–1611 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Gao, X. & Hannoush, R.N. Single-cell in situ imaging of palmitoylation in fatty-acylated proteins. Nat. Protoc. 9, 2607–2623 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, J. et al. Global, in situ, site-specific analysis of protein S-sulfenylation. Nat. Protoc. 10, 1022–1037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heal, W.P., Wright, M.H., Thinon, E. & Tate, E.W. Multifunctional protein labeling via enzymatic N-terminal tagging and elaboration by click chemistry. Nat. Protoc. 7, 105–117 (2012).

    Article  CAS  Google Scholar 

  34. Zhang, J., Wang, J., Ng, S., Lin, Q. & Shen, H.M. Development of a novel method for quantification of autophagic protein degradation by AHA labeling. Autophagy 10, 901–912 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kharaziha, P. et al. Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget 6, 37066–37082 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Polletta, L. et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 11, 253–270 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Rashid, M.M., Runci, A., Russo, M.A. & Tafani, M. Muscle Lim protein (MLP)/CSRP3 at the crossroad between mechanotransduction and autophagy. Cell Death Dis. 6, e1940 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kimura, S., Fujita, N., Noda, T. & Yoshimori, T. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol. 452, 1–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Lelouard, H. et al. Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417, 177–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Kawai, A., Takano, S., Nakamura, N. & Ohkuma, S. Quantitative monitoring of autophagic degradation. Biochem. Biophys. Res. Commun. 351, 71–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Shvets, E., Fass, E. & Elazar, Z. Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy 4, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Kiick, K.L., Saxon, E., Tirrell, D.A. & Bertozzi, C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA 99, 19–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Nikic, I., Kang, J.H., Girona, G.E., Aramburu, I.V. & Lemke, E.A. Labeling proteins on live mammalian cells using click chemistry. Nat. Protoc. 10, 780–791 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Jiang, L. et al. Monitoring the progression of cell death and the disassembly of dying cells by flow cytometry. Nat. Protoc. 11, 655–663 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Breton, G., Lee, J., Liu, K. & Nussenzweig, M.C. Defining human dendritic cell progenitors by multiparametric flow cytometry. Nat. Protoc. 10, 1407–1422 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Forment, J.V. & Jackson, S.P. A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells. Nat. Protoc. 10, 1297–1307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, Y.T. et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285, 10850–10861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petiot, A., Ogier-Denis, E., Blommaart, E.F., Meijer, A.J. & Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992–998 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23, 33–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Hosokawa, N., Hara, Y. & Mizushima, N. Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett. 580, 2623–2629 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Research Foundation-supported Interdisciplinary Research Group in Infectious Diseases of SMART (Singapore-MIT Alliance for Research and Technology) and by research grants from the National Medical Research Council Singapore (nos. NMRC-CIRG/1346/2012 and NMRC/CIRG/1373/2013) to H.-M.S. Y.M.L. was supported by NUS Research Scholarships. We also acknowledge support from the Chinese National Natural Sciences Foundation (grant nos. 81630092 and 81421091) and the Doctoral Station Science Foundation from the Chinese Ministry of Education of China (grant no. 20130091130003 to Z.-C.H.).

Author information

Authors and Affiliations

Authors

Contributions

J.W., J.Z., Q.L. and H.-M.S. designed the research. J.W. and J.Z. performed the experiments. Z.-C.H., S.N. and Y.S. assisted in the data analysis. J.W., J.Z., Y.M.L., Q.L. and H.-M.S. wrote the manuscript.

Corresponding authors

Correspondence to Qingsong Lin or Han-Ming Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, J., Lee, Y. et al. Nonradioactive quantification of autophagic protein degradation with L-azidohomoalanine labeling. Nat Protoc 12, 279–288 (2017). https://doi.org/10.1038/nprot.2016.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.160

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing