Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hedgehog signalling in cancer formation and maintenance

Key Points

  • Hedgehog (HH) signalling is required for cell differentiation and organ formation during embryogenesis. In the adult, HH signalling remains active in some organs where it has been implicated in the regulation of stem-cell maintenance and proliferation.

  • HH signalling targets include genes that are important for cell proliferation — proto-oncogenes — as well as growth factors.

  • Misregulation of HH signalling has been shown to cause formation of basal-cell carcinoma and medulloblastoma, and mutations of HH pathway components have been found both in familial and sporadic cases. More recently, small-cell lung cancer (SCLC) and pancreatic adenocarcinoma have been linked to HH signalling, providing a molecular mechanism for these aggressive diseases.

  • Importantly, HH signalling seems to be required not only for cancer initiation but also for tumour growth and survival of medulloblastomas, SCLC and pancreatic adenocarcinoma.

  • HH inhibitors could provide novel therapeutic approaches for treatment of otherwise hard to cure cancer types. Synthetic compounds have been identified that act as HH inhibitors in a very specific manner.

Abstract

The Hedgehog signalling pathway is essential for numerous processes during embryonic development. Members of this family of secreted proteins control cell proliferation, differentiation and tissue patterning in a dose-dependent manner. Although the overall activity of the pathway is diminished after embryogenesis, recent reports show that the pathway remains active in some adult tissues, including adult stem cells in the brain and skin. There is also evidence that uncontrolled activation of the pathway results in specific types of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hedgehog signalling pathway.
Figure 2: Hedgehog pathway and cancer.

Similar content being viewed by others

References

  1. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  PubMed  Google Scholar 

  2. Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Marigo, V., Davey, R. A., Zuo, Y., Cunningham, J. M. & Tabin, C. J. Biochemical evidence that patched is the Hedgehog receptor. Nature 384, 176–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Stone, D. M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Goodrich, L. V., Johnson, R. L., Milenkovic, L., McMahon, J. A. & Scott, M. P. Conservation of the hedghog/patched signaling pathway from flies to mice: induction of a mouse patched gene by hedgehog. Genes Dev. 10, 301–312 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Carpenter, D. et al. Characterization of two patched receptors for the vertebrate hedgehog protein family. Proc. Natl Acad. Sci. USA 95, 13630–13634 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Motoyama, J. et al. Overlapping and non-overlapping Ptch2 expression with Shh during mouse embryogenesis. Mech. Dev. 78, 81–84 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Chuang, P. T. & McMahon, A. P. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397, 617–621 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Kalderon, D. Transducing the hedgehog signal. Cell 103, 371–374 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Ruiz i Altaba, A., Sanchez, P. & Dahmane, N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nature Rev. Cancer 2, 361–372 (2002).

    Article  CAS  Google Scholar 

  11. Murone, M. et al. Gli regulation by the opposing activities of fused and suppressor of fused. Nature Cell Biol. 2, 310–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Ingham, P. W. Transducing Hedgehog: the story so far. EMBO J. 17, 3505–3511 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking sonic hedgehog function. Nature 383, 407–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Ericson, J., Briscoe, J., Rashbass, P., van Heyningen, V. & Jessell, T. M. Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb. Symp. Quant. Biol. 62, 451–466 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Marti, E., Bumcrot, D., Takada, R. & McMahon, A. P. Requirement of 19K form of sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Roelink, H. et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Hebrok, M. Hedgehog signaling in pancreas development. Mech. Dev. 20, 45–57 (2003).

    Article  Google Scholar 

  18. Apelqvist, A., Ahlgren, U. & Edlund, H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr. Biol. 7, 801–804 (1997).

    Article  CAS  Google Scholar 

  19. Hebrok, M., Kim, S. K. & Melton, D. A. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12, 1705–1713 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Hebrok, M., Kim, S. K., St. Jacques, B., McMahon, A. P. & Melton, D. A. Regulation of pancreas development by Hedgehog signaling. Development 127, 4905–4913 (2000).

    CAS  PubMed  Google Scholar 

  21. Thomas, M. K., Rastalsky, N., Lee, J. H. & Habener, J. F. Hedgehog signaling regulation of insulin production by pancreatic β-cells. Diabetes 49, 2039–2047 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Thomas, M. K., Lee, J. H., Rastalsky, N. & Habener, J. F. Hedgehog signaling regulation of homeodomain protein islet duodenum homeobox-1 expression in pancreatic β-cells. Endocrinology 142, 1033–1040 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Kawahira, H. et al. Combined activities of Hedgehog signaling inhibitors regulate pancreas development. Development 130, 4871–4879 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Duman-Scheel, M., Weng, L., Xin, S. & Du, W. Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature 417, 299–304 (2002). Studies in Drosophila show that Hh signalling is involved in regulating cellular proliferation and growth by promoting the transcription of two G1–S cyclins — cyclin D and cyclin E.

    Article  CAS  Google Scholar 

  25. Mill, P. et al. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev. 17, 282–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Barnes, E. A., Kong, M., Ollendorff, V. & Donoghue, D. J. Patched1 interacts with cyclin B1 to regulate cell cycle progression. EMBO J. 20, 2214–2223 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Fan, H. & Khavari, P. A. Sonic hedgehog opposes epithelial cell cycle arrest. J. Cell Biol. 147, 71–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Oro, A. E. et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276, 817–821 (1997). Analysis of a mouse model shows that Shh overexpression is sufficient to induce formation of BCC.

    Article  CAS  PubMed  Google Scholar 

  29. Fan, H., Oro, A. E., Scott, M. P. & Khavari, P. A. Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nature Med. 3, 788–792 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Kinzler, K. W. et al. Identification of an amplified, highly expressed gene in a human glioma. Science 236, 70–73 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Holland, E. C. Gliomagenesis: genetic alterations and mouse models. Nature Rev. Genet. 2, 120–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Dahmane, N., Lee, J., Robins, P., Heller, P. & Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389, 876–881 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Nilsson, M. et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl Acad. Sci. USA 97, 3438–3443 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Grachtchouk, M. et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genet. 24, 216–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Taylor, M. D. et al. Mutations in SUFU predispose to medulloblastoma. Nature Genet. 31, 306–310 (2002).

    Article  CAS  Google Scholar 

  36. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  Google Scholar 

  39. Wolter, M., Reifenberger, J., Sommer, C., Ruzicka, T. & Reifenberger, G. Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 57, 2581–2585 (1997).

    CAS  PubMed  Google Scholar 

  40. Xie, J. et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res. 57, 2369–2372 (1997).

    CAS  PubMed  Google Scholar 

  41. Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Reifenberger, J. et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 58, 1798–1803 (1998).

    CAS  PubMed  Google Scholar 

  43. Watkins, D. N. et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422, 313–317 (2003). Evidence that HH signalling is activated in SCLC and that constitutive activation of the pathway is required for cancer maintenance.

    Article  CAS  PubMed  Google Scholar 

  44. Thayer, S. P. et al. Hedgehog an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–855 (2003). HH pathway misregulation induces formation of pancreatic adenocarcinoma and maintains tumour growth and survival.

    Article  CAS  PubMed  Google Scholar 

  45. Zochbauer-Muller, S., Gazdar, A. F. & Minna, J. D. Molecular pathogenesis of lung cancer. Annu. Rev. Physiol. 64, 681–708 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Bardeesy, N. & DePinho, R. A. Pancreatic cancer biology and genetics. Nature Rev. Cancer 2, 897–909 (2002).

    Article  CAS  Google Scholar 

  47. Chen, J. K., Taipale, J., Cooper, M. K. & Beachy, P. A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Klimstra, D. S. & Longnecker, D. S. K-ras mutations in pancreatic ductal proliferative lesions. Am. J. Pathol. 145, 1547–1550 (1994).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Day, J. D. et al. Immunohistochemical evaluation of HER-2/neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasms. Hum. Pathol. 27, 119–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Dahmane, N. et al. The Sonic Hedgehog–Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128, 5201–5212 (2001). This study shows for the first time that human brain tumour cell lines and primary tumours respond to cyclopamine and that this drug inhibits their proliferation.

    CAS  PubMed  Google Scholar 

  51. Berman, D. M. et al. Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–850 (2003). Evidence that deregulation of HH signalling is a common parameter in several gastrointestinal tumours.

    Article  CAS  PubMed  Google Scholar 

  52. Eberle, M. A. et al. A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32-34. Am. J. Hum. Genet. 70, 1044–1048 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Chuang, P. T., Kawcak, T. & McMahon, A. P. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev. 17, 342–347 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Berman, D. M. et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561 (2002). Evidence that Hh signalling is required for the maintenance of medulloblastoma both in cell culture and in allograft experiments in nude mice.

    Article  CAS  PubMed  Google Scholar 

  55. Kenney, A. M., Cole, M. D. & Rowitch, D. H. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130, 15–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Amin, A., Li, Y. & Finkelstein, R. Hedgehog activates the EGF receptor pathway during Drosophila head development. Development 126, 2623–2630 (1999).

    CAS  PubMed  Google Scholar 

  57. Korc, M. et al. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor α. J. Clin. Invest. 90, 1352–1360 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Wagner, M. et al. A murine tumour progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev. 15, 286–293 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. McCormick, F. Activators and effectors of ras p21 proteins. Curr. Opin. Genet. Dev. 4, 71–76 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Treisman, R. Journey to the surface of the cell: Fos regulation and the SRE. EMBO J. 14, 4905–4913 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Xie, J. et al. A role of PDGFRα in basal cell carcinoma proliferation. Proc. Natl Acad. Sci. USA 98, 9255–9259 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Nicolas, M. et al. Notch1 functions as a tumour suppressor in mouse skin. Nat Genet 33, 416–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. MiYamoto, Y. et al. Notch mediates TGF α-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3, 565–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Mullor, J. L., Dahmane, N., Sun, T. & Ruiz i Altaba, A. Wnt signals are targets and mediators of Gli function. Curr. Biol. 11, 769–773 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Oro, A. E. & Higgins, K. Hair cycle regulation of Hedgehog signal reception. Dev. Biol. 255, 238–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Bonner-Weir, S. & Sharma, A. Pancreatic stem cells. J. Pathol. 197, 519–526 (2002).

    Article  PubMed  Google Scholar 

  67. Hruban, R. H. et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am. J. Surg. Pathol. 25, 579–586 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Meszoely, I. M., Means, A. L., Scoggins, C. R. & Leach, S. D. Developmental aspects of early pancreatic cancer. Cancer J. 7, 242–250 (2001).

    CAS  PubMed  Google Scholar 

  69. Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Keeler, R. F. & Binns, W. Teratogenic compounds of Veratrum californicum (Durand). V. Comparison of cyclopian effects of steroidal alkaloids from the plant and structurally related compounds from other sources. Teratology 1, 5–10 (1968).

    Article  CAS  PubMed  Google Scholar 

  71. Cooper, M. K., Porter, J. A., Young, K. E. & Beachy, P. A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 1603–1607 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Incardona, J. P., Gaffield, W., Kapur, R. P. & Roelink, H. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125, 3553–3562. (1998).

    CAS  PubMed  Google Scholar 

  73. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, J. K., Taipale, J., Young, K. E., Maiti, T. & Beachy, P. A. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Williams, J. A. et al. Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc. Natl Acad. Sci. USA 100, 4616–4621 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T. M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 (1996).

    Article  CAS  Google Scholar 

  77. Dahmane, N. & Ruiz i Altaba, A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126, 3089–3100 (1999).

    PubMed  Google Scholar 

  78. Wallace, V. A. Purkinjie-cell-derived Sonic Hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol. 9, 445–448 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to dedicate this manuscript to the memory of Ira Herskowitz, who inspired us to contemplate about the connection between embryonic signalling pathways and cancer. We would like to thank all members of the Hebrok laboratory for stimulating discussions. In particular, we would like to thank P. Heiser and J. Lau as well as H. Kawahira, D. Cano and M. Tzanakakis for critical reading of the manuscript. Work in M. H.'s laboratory was supported by grants from the Juvenile Diabetes Research Foundation, the Hillblom Foundation and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Related links

Related links

Databases

Cancer.gov

pancreatic adenocarcinomas

SCLC

LocusLink

Ci

Dhh

Fu

Gli1

Gli2

Gli3

hh

Hip1

Ihh

Ptch1

Ptch2

Shh

Smo

SuFu

OMIM

BCNS

Glossary

HEPTAHELICAL BUNDLE

A transmembrane domain of the Smoothened protein that is composed of seven α-helical stretches.

EXOCRINE ACIN

Alveolar structures that are formed by the cells that produce and release pancreatic digestive enzymes in the lumen of collecting pancreatic ducts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Magliano, M., Hebrok, M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 3, 903–911 (2003). https://doi.org/10.1038/nrc1229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing