Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation

Key Points

  • Human T-cell leukaemia virus type 1 (HTLV-1), a retrovirus that infects 20 million people worldwide, was the first retrovirus to be shown to be causal for a human cancer, adult T-cell leukaemia (ATL).

  • The infectivity of HTLV-1 is tightly cell-associated, and is mediated through a virological synapse. Cell-free virus is largely non-infectious.

  • HTLV-1 does not use viral capture of a cellular proto-oncogene for oncogenesis. Its viral oncoprotein, Tax, is needed to initiate but not maintain cellular transformation.

  • Tax transforms cells through various mechanisms, including the creation of chromosomal instability, the amplification of centrosomes, the abrogation of DNA repair, the activation of cyclin-dependant kinases and nuclear factor κB (NFκB) and Akt signalling, and the silencing of p53 and spindle-assembly checkpoints.

  • The maintenance of ATL transformation seems to require the function of a novel antisense protein and RNA, termed HTLV-1 basic leucine zipper factor (HBZ).

Abstract

It has been 30 years since a 'new' leukaemia termed adult T-cell leukaemia (ATL) was described in Japan, and more than 25 years since the isolation of the retrovirus, human T-cell leukaemia virus type 1 (HTLV-1), that causes this disease. We discuss HTLV-1 infectivity and how the HTLV-1 Tax oncoprotein initiates transformation by creating a cellular environment favouring aneuploidy and clastogenic DNA damage. We also explore the contribution of a newly discovered protein and RNA on the HTLV-1 minus strand, HTLV-1 basic leucine zipper factor (HBZ), to the maintenance of virus-induced leukaemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The HTLV-1 proviral genome.
Figure 2: The natural history of HTLV-1 infection.
Figure 3: Cell–cell transmission of HTLV-1 occurs through a virological synapse.
Figure 4: The HTLV-1 oncoprotein Tax activates two survival pathways, NFκB and Akt, to promote cell survival and proliferation.
Figure 5: Aneuploidy and multipolar mitosis in HTLV-1-infected cells.
Figure 6: Tax affects many cellular factors that contribute to clastogenic DNA damage in HTLV-1-infected cells.
Figure 7: Schematic illustration of the expression and the activities of the HBZ RNA and protein in HTLV-1-infected cells.

Similar content being viewed by others

References

  1. Takatsuki, K. Discovery of adult T-cell leukemia. Retrovirology 2, 16 (2005).

    PubMed  PubMed Central  Google Scholar 

  2. Gallo, R. C. The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology 2, 17 (2005).

    PubMed  PubMed Central  Google Scholar 

  3. Yoshida, M. Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene 24, 5931–5937 (2005).

    CAS  PubMed  Google Scholar 

  4. Grassmann, R., Aboud, M. & Jeang, K. T. Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 24, 5976–5985 (2005).

    CAS  PubMed  Google Scholar 

  5. Van, D. S., Salemi, M. & Vandamme, A. M. Dating the origin of the African human T-cell lymphotropic virus type-i (HTLV-I) subtypes. Mol. Biol. Evol. 18, 661–671 (2001).

    Google Scholar 

  6. Wolfe, N. D. et al. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc. Natl Acad. Sci. USA 102, 7994–7999 (2005).

    CAS  PubMed  Google Scholar 

  7. Calattini, S. et al. Discovery of a new human T-cell lymphotropic virus (HTLV-3) in Central Africa. Retrovirology 2, 30 (2005).

    PubMed  PubMed Central  Google Scholar 

  8. Proietti, F. A., Carneiro-Proietti, A. B., Catalan-Soares, B. C. & Murphy, E. L. Global epidemiology of HTLV-I infection and associated diseases. Oncogene 24, 6058–6068 (2005).

    CAS  PubMed  Google Scholar 

  9. Arisawa, K. et al. Evaluation of adult T-cell leukemia/lymphoma incidence and its impact on non-Hodgkin lymphoma incidence in southwestern Japan. Int. J. Cancer 85, 319–324 (2000).

    CAS  PubMed  Google Scholar 

  10. Bangham, C. R. & Osame, M. Cellular immune response to HTLV-1. Oncogene 24, 6035–6046 (2005).

    CAS  PubMed  Google Scholar 

  11. Matsuoka, M. Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology 2, 27 (2005).

    PubMed  PubMed Central  Google Scholar 

  12. Yamaguchi, K. et al. Concurrence of lymphoma type adult T-cell leukemia in three sisters. Cancer 56, 1688–1690 (1985).

    CAS  PubMed  Google Scholar 

  13. Etoh, K. et al. Rapid quantification of HTLV-I provirus load: detection of monoclonal proliferation of HTLV-I-infected cells among blood donors. Int. J. Cancer 81, 859–864 (1999).

    CAS  PubMed  Google Scholar 

  14. Karube, K. et al. Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br. J. Haematol. 126, 81–84 (2004).

    CAS  PubMed  Google Scholar 

  15. Chen, S. et al. Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells. Int. Immunol. 18, 269–277 (2006).

    CAS  PubMed  Google Scholar 

  16. Feuer, G. et al. Human T-cell leukemia virus infection of human hematopoietic progenitor cells: maintenance of virus infection during differentiation in vitro and in vivo. J. Virol. 70, 4038–4044 (1996). This showed the first evidence that HTLV-1 can infect haematopoietic stem cells, with implications for the cell of origin of ATL.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wencker, M., Sausse, C., Derse, D., Gazzolo, L. & Duc, D. M. Human T-cell leukemia virus type 1 tax protein down-regulates pre-T-cell receptor alpha gene transcription in human immature thymocytes. J. Virol. 81, 301–308 (2007).

    CAS  PubMed  Google Scholar 

  18. Hasegawa, H. et al. Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nature Med. 12, 466–472 (2006).

    CAS  PubMed  Google Scholar 

  19. Igakura, T. et al. Spread of HTLVI between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713–1716 (2003). Provided mechanistic insights into the cell–cell spread of HTLV-1.

    CAS  PubMed  Google Scholar 

  20. Barnard, A. L., Igakura, T., Tanaka, Y., Taylor, G. P. & Bangham, C. R. Engagement of specific T-cell surface molecules regulates cytoskeletal polarization in HTLV-1-infected lymphocytes. Blood 106, 988–995 (2005).

    CAS  PubMed  Google Scholar 

  21. Nejmeddine, M., Barnard, A. L., Tanaka, Y., Taylor, G. P. & Bangham, C. R. Human T-lymphotropic virus, type 1, tax protein triggers microtubule reorientation in the virological synapse. J. Biol. Chem. 280, 29653–29660 (2005).

    CAS  PubMed  Google Scholar 

  22. Tanaka, Y., Fukudome, K., Hayashi, M., Takagi, S. & Yoshie, O. Induction of ICAM-1 and LFA-3 by Tax1 of human T-cell leukemia virus type 1 and mechanism of down-regulation of ICAM-1 or LFA-1 in adult-T-cell-leukemia cell lines. Int. J. Cancer 60, 554–561 (1995).

    CAS  PubMed  Google Scholar 

  23. Tanaka, Y., Hayashi, M., Takagi, S. & Yoshie, O. Differential transactivation of the intercellular adhesion molecule 1 gene promoter by Tax1 and Tax2 of human T-cell leukemia viruses. J. Virol. 70, 8508–8517 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Valentin, H. et al. Transcriptional activation of the vascular cell adhesion molecule-1 gene in T lymphocytes expressing human T-cell leukemia virus type 1 Tax protein. J. Virol. 71, 8522–8530 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Doi, K. et al. Preferential selection of human T-cell leukemia virus type I provirus integration sites in leukemic versus carrier states. Blood 106, 1048–1053 (2005).

    CAS  PubMed  Google Scholar 

  26. Wattel, E., Vartanian, J. P., Pannetier, C. & Wain-Hobson, S. Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J. Virol. 69, 2863–2868 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Etoh, K. et al. Persistent clonal proliferation of human T-lymphotropic virus type I-infected cells in vivo. Cancer Res. 57, 4862–4867 (1997).

    CAS  PubMed  Google Scholar 

  28. Cavrois, M. et al. Persistent oligoclonal expansion of human T-cell leukemia virus type 1-infected circulating cells in patients with Tropical spastic paraparesis/HTLV-1 associated myelopathy. Oncogene 17, 77–82 (1998).

    CAS  PubMed  Google Scholar 

  29. Taylor, G. P. et al. Zidovudine plus lamivudine in Human T-Lymphotropic Virus type-I-associated myelopathy: a randomised trial. Retrovirology 3, 63 (2006).

    PubMed  PubMed Central  Google Scholar 

  30. Miyazato, P. et al. De novo human T-cell leukemia virus type 1 infection of human lymphocytes in NOD-SCID, common gamma-chain knockout mice. J. Virol. 80, 10683–10691 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Van, D. S. et al. The low evolutionary rate of human T-cell lymphotropic virus type-1 confirmed by analysis of vertical transmission chains. Mol. Biol. Evol. 21, 603–611 (2004).

    Google Scholar 

  32. Manel, N. et al. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 115, 449–459 (2003). Identified a cell-surface receptor for HTLV-1.

    CAS  PubMed  Google Scholar 

  33. Takenouchi, N. et al. GLUT1 Is Not the Primary Binding Receptor but Is Associated with Cell-to-Cell Transmission of Human T-Cell Leukemia Virus Type 1. J. Virol. 81, 1506–1510 (2007).

    CAS  PubMed  Google Scholar 

  34. Yasunaga, J. et al. Impaired production of naive T lymphocytes in human T-cell leukemia virus type I-infected individuals: its implications in the immunodeficient state. Blood 97, 3177–3183 (2001).

    CAS  Google Scholar 

  35. Collins, N. D. et al. Selective ablation of human T-cell lymphotropic virus type 1 p12I reduces viral infectivity in vivo. Blood 91, 4701–4707 (1998).

    CAS  PubMed  Google Scholar 

  36. Silverman, L. R., Phipps, A. J., Montgomery, A., Ratner, L. & Lairmore, M. D. Human T-cell lymphotropic virus type 1 open reading frame II-encoded p30II is required for in vivo replication: evidence of in vivo reversion. J. Virol. 78, 3837–3845 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Younis, I., Yamamoto, B., Phipps, A. & Green, P. L. Human T-cell leukemia virus type 1 expressing nonoverlapping tax and rex genes replicates and immortalizes primary human T lymphocytes but fails to replicate and persist in vivo. J. Virol. 79, 14473–14481 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hiraragi, H. et al. Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13(II) is required for viral infectivity in vivo. J. Virol. 80, 3469–3476 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ding, W. et al. Endoplasmic reticulum and cis-Golgi localization of human T-lymphotropic virus type 1 p12(I): association with calreticulin and calnexin. J. Virol. 75, 7672–7682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson, J. M. et al. Free major histocompatibility complex class I heavy chain is preferentially targeted for degradation by human T-cell leukemia/lymphotropic virus type 1 p12(I) protein. J. Virol. 75, 6086–6094 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, S. J., Nair, A. M., Fernandez, S., Mathes, L. & Lairmore, M. D. Enhancement of LFA-1-mediated T cell adhesion by human T lymphotropic virus type 1 p12I1. J. Immunol. 176, 5463–5470 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nicot, C. et al. HTLV-1-encoded p30II is a post-transcriptional negative regulator of viral replication. Nature Med. 10, 197–201 (2004).

    CAS  PubMed  Google Scholar 

  43. Zhang, W., Nisbet, J. W., Bartoe, J. T., Ding, W. & Lairmore, M. D. Human T-lymphotropic virus type 1 p30(II) functions as a transcription factor and differentially modulates CREB-responsive promoters. J. Virol. 74, 11270–11277 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Akagi, T., Ono, H. & Shimotohno, K. Characterization of T cells immortalized by Tax1 of human T-cell leukemia virus type 1. Blood 86, 4243–4249 (1995). Gave an early insight into the role of Tax in T-cell immortalization.

    CAS  PubMed  Google Scholar 

  45. Furukawa, Y., Kubota, R., Tara, M., Izumo, S. & Osame, M. Existence of escape mutant in HTLV-I tax during the development of adult T-cell leukemia. Blood 97, 987–993 (2001). Presented evidence consistent with Tax being dispensable for the maintenance of ATL transformation.

    CAS  PubMed  Google Scholar 

  46. Takeda, S. et al. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int. J. Cancer 109, 559–567 (2004).

    CAS  PubMed  Google Scholar 

  47. Koiwa, T. et al. 5'-long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo. J. Virol. 76, 9389–9397 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Taniguchi, Y. et al. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. Retrovirology 2, 64 (2005).

    PubMed  PubMed Central  Google Scholar 

  49. Tamiya, S. et al. Two types of defective human T-lymphotropic virus type I provirus in adult T-cell leukemia. Blood 88, 3065–3073 (1996). Presented evidence supporting the hypothesis that Tax is not needed for the maintenance of cellular transformation.

    CAS  PubMed  Google Scholar 

  50. Duensing, S. & Munger, K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int. J. Cancer 109, 157–162 (2004).

    CAS  PubMed  Google Scholar 

  51. Kasai, T. & Jeang, K. T. Two discrete events, human T-cell leukemia virus type I Tax oncoprotein expression and a separate stress stimulus, are required for induction of apoptosis in T-cells. Retrovirology 1, 7 (2004).

    PubMed  PubMed Central  Google Scholar 

  52. Kuo, Y. L. & Giam, C. Z. Activation of the anaphase promoting complex by HTLV-1 tax leads to senescence. EMBO J. 25, 1741–1752 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Matsuoka, M. & Jeang, K. T. Human T-cell leukemia virus type I at age 25: a progress report. Cancer Res. 65, 4467–4470 (2005).

    CAS  PubMed  Google Scholar 

  54. Song, G., Ouyang, G. & Bao, S. The activation of Akt/PKB signaling pathway and cell survival. J. Cell Mol. Med. 9, 59–71 (2005).

    CAS  PubMed  Google Scholar 

  55. Li, J. et al. PI-3K and Akt are mediators of AP-1 induction by 5-MCDE in mouse epidermal Cl41 cells. J. Cell Biol. 165, 77–86 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jeong, S. J., Pise-Masison, C. A., Radonovich, M. F., Park, H. U. & Brady, J. N. Activated AKT regulates NF-κB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24, 6719–6728 (2005). Shows the importance of Akt signaling in HTLV-1 transformation.

    CAS  PubMed  Google Scholar 

  57. Peloponese, J. M. Jr. & Jeang, K. T. Role for Akt/protein kinase B and activator protein-1 in cellular proliferation induced by the human T-cell leukemia virus type 1 tax oncoprotein. J. Biol. Chem. 281, 8927–8938 (2006).

    CAS  PubMed  Google Scholar 

  58. Ikezoe, T. et al. Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leuk. Res. 26 September 2006 [Epub ahead of print].

  59. Sun, S. C. & Yamaoka, S. Activation of NF-κB by HTLVI and implications for cell transformation. Oncogene 24, 5952–5964 (2005).

    CAS  PubMed  Google Scholar 

  60. Iha, H. et al. Segregation of NF-κB activation through NEMO/IKKγ by Tax and TNFα: implications for stimulus-specific interruption of oncogenic signaling. Oncogene 22, 8912–8923 (2003).

    CAS  PubMed  Google Scholar 

  61. Xiao, G. et al. Retroviral oncoprotein Tax induces processing of NFκB2/p100 in T cells: evidence for the involvement of IKKα. EMBO J. 20, 6805–6815 (2001). Provided insight into the activation of NFκB by HTLV-1 Tax.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Higuchi, M. et al. Elevated expression of CD30 in adult T-cell leukemia cell lines: possible role in constitutive NF-κB activation. Retrovirology 2, 29 (2005).

    PubMed  PubMed Central  Google Scholar 

  63. Hironaka, N. et al. Tax-independent constitutive IκB kinase activation in adult T-cell leukemia cells. Neoplasia. 6, 266–278 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Neuveut, C. et al. Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-cdk and p110Rb. Mol. Cell Biol. 18, 36–32 (1998).

    Google Scholar 

  65. Schmitt, I., Rosin, O., Rohwer, P., Gossen, M. & Grassmann, R. Stimulation of cyclin-dependent kinase activity and G1- to S-phase transition in human lymphocytes by the human T-cell leukemia/lymphotropic virus type 1 Tax protein. J. Virol. 72, 633–640 (1998). One of the initial reports that demonstrated a role for Tax in accelerating cell-cycle progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Akagi, T., Ono, H. & Shimotohno, K. Expression of cell-cycle regulatory genes in HTLV-I infected T-cell lines: possible involvement of Tax1 in the altered expression of cyclin D2, p18Ink4 and p21Waf1/Cip1/Sdi1. Oncogene 12, 1645–1652 (1996).

    CAS  PubMed  Google Scholar 

  67. Santiago, F. et al. Transcriptional up-regulation of the cyclin D2 gene and acquisition of new cyclin-dependent kinase partners in human T-cell leukemia virus type 1-infected cells. J. Virol. 73, 9917–9927 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Iwanaga, R., Ohtani, K., Hayashi, T. & Nakamura, M. Molecular mechanism of cell cycle progression induced by the oncogene product Tax of human T-cell leukemia virus type I. Oncogene 20, 2055–2067 (2001).

    CAS  PubMed  Google Scholar 

  69. Haller, K. et al. Physical interaction of human T-cell leukemia virus type 1 Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein. Mol. Cell Biol. 22, 3327–3338 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fraedrich, K., Muller, B. & Grassmann, R. The HTLV-1 Tax protein binding domain of cyclin-dependent kinase 4 (CDK4) includes the regulatory PSTAIRE helix. Retrovirology 2, 54 (2005).

    PubMed  PubMed Central  Google Scholar 

  71. Kehn, K. et al. The HTLV-I Tax oncoprotein targets the retinoblastoma protein for proteasomal degradation. Oncogene 24, 525–540 (2005).

    CAS  PubMed  Google Scholar 

  72. Lemasson, I., Thebault, S., Sardet, C., Devaux, C. & Mesnard, J. M. Activation of E2F-mediated transcription by human T-cell leukemia virus type I Tax protein in a p16(INK4A)-negative T-cell line. J. Biol. Chem. 273, 23598–23604 (1998).

    CAS  PubMed  Google Scholar 

  73. Suzuki, T., Narita, T., Uchida-Toita, M. & Yoshida, M. Down-regulation of the INK4 family of cyclin-dependent kinase inhibitors by tax protein of HTLV-1 through two distinct mechanisms. Virology 259, 384–391 (1999).

    CAS  PubMed  Google Scholar 

  74. Riou, P., Bex, F. & Gazzolo, L. The human T cell leukemia/lymphotropic virus type 1 Tax protein represses MyoD-dependent transcription by inhibiting MyoD-binding to the KIX domain of p300. A potential mechanism for Tax-mediated repression of the transcriptional activity of basic helix-loop-helix factors. J. Biol. Chem. 275, 10551–10560 (2000).

    CAS  PubMed  Google Scholar 

  75. Low, K. G. et al. Human T-cell leukemia virus type 1 Tax releases cell cycle arrest induced by p16INK4a. J. Virol. 71, 1956–1962 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Suzuki, T., Kitao, S., Matsushime, H. & Yoshida, M. HTLV-1 Tax protein interacts with cyclin-dependent kinase inhibitor p16INK4A and counteracts its inhibitory activity towards CDK4. EMBO J. 15, 1607–1614 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kehn, K. et al. The role of cyclin D2 and p21/waf1 in human T-cell leukemia virus type 1 infected cells. Retrovirology 1, 6 (2004).

    PubMed  PubMed Central  Google Scholar 

  78. Lee, S. S., Weiss, R. S. & Javier, R. T. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc. Natl Acad. Sci. USA 94, 6670–6675 (1997). The first report on oncoproteins that contain a PBM domain, which is used to inactivate the PDZ-containing tumour suppressor DLG1.

    CAS  PubMed  Google Scholar 

  79. Suzuki, T., Ohsugi, Y., Uchida-Toita, M., Akiyama, T. & Yoshida, M. Tax oncoprotein of HTLV-1 binds to the human homologue of Drosophila discs large tumor suppressor protein, hDLG, and perturbs its function in cell growth control. Oncogene 18, 5967–5972 (1999).

    CAS  PubMed  Google Scholar 

  80. Woods, D. F. & Bryant, P. J. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66, 451–464 (1991).

    CAS  PubMed  Google Scholar 

  81. Matsumine, A. et al. Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science 272, 1020–1023 (1996).

    CAS  PubMed  Google Scholar 

  82. Ishidate, T., Matsumine, A., Toyoshima, K. & Akiyama, T. The APC-hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase. Oncogene 19, 365–372 (2000).

    CAS  PubMed  Google Scholar 

  83. Hirata, A. et al. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line. Virology 318, 327–336 (2004).

    CAS  PubMed  Google Scholar 

  84. Ishioka, K. et al. Inactivation of tumor suppressor Dlg1 augments transformation of a T-cell line induced by human T-cell leukemia virus type 1 Tax protein. Retrovirology 3, 71 (2006).

    PubMed  PubMed Central  Google Scholar 

  85. Endo, K. et al. Human T-cell leukemia virus type 2 (HTLV-2) Tax protein transforms a rat fibroblast cell line but less efficiently than HTLV-1 Tax. J. Virol. 76, 2648–2653 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rasnick, D. Aneuploidy theory explains tumor formation, the absence of immune surveillance, and the failure of chemotherapy. Cancer Genet. Cytogenet. 136, 66–72 (2002).

    CAS  PubMed  Google Scholar 

  87. Kasai, T., Iwanaga, Y., Iha, H. & Jeang, K. T. Prevalent loss of mitotic spindle checkpoint in adult T-cell leukemia confers resistance to microtubule inhibitors. J. Biol. Chem. 277, 5187–5193 (2002). Presents data that show that ATL cells have a mitotic spindle assembly checkpoint defect.

    CAS  PubMed  Google Scholar 

  88. Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer 2, 815–825 (2002).

    CAS  Google Scholar 

  89. Pihan, G. A. et al. Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res. 61, 2212–2219 (2001).

    CAS  PubMed  Google Scholar 

  90. Schneeweiss, A. et al. Centrosomal aberrations in primary invasive breast cancer are associated with nodal status and hormone receptor expression. Int. J. Cancer 107, 346–352 (2003).

    CAS  PubMed  Google Scholar 

  91. Salisbury, J. L., D'Assoro, A. B. & Lingle, W. L. Centrosome amplification and the origin of chromosomal instability in breast cancer. J. Mammary Gland. Biol. Neoplasia 9, 275–283 (2004).

    PubMed  Google Scholar 

  92. Duensing, S. & Munger, K. Centrosome abnormalities and genomic instability induced by human papillomavirus oncoproteins. Prog. Cell Cycle Res. 5, 383–391 (2003).

    PubMed  Google Scholar 

  93. Forgues, M. et al. Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol. Cell Biol. 23, 5282–5292 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ching, Y. P., Chan, S. F., Jeang, K. T. & Jin, D. Y. The retroviral oncoprotein Tax targets the coiled-coil centrosomal protein TAX1BP2 to induce centrosome overduplication. Nat. Cell Biol. 8, 717–724 (2006). Showed details of the mechanism of centrosomal amplification in ATL cells.

    CAS  PubMed  Google Scholar 

  95. Peloponese, J. M. Jr, Haller, K., Miyazato, A. & Jeang, K. T. Abnormal centrosome amplification in cells through the targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein. Proc. Natl Acad. Sci. USA 102, 18974–18979 (2005).

    CAS  PubMed  Google Scholar 

  96. Nitta, T. et al. Centrosome amplification in adult T-cell leukemia and human T-cell leukemia virus type 1 Tax-induced human T cells. Cancer Sci. 97, 836–841 (2006).

    CAS  PubMed  Google Scholar 

  97. Kamihira, S. et al. DNA aneuploidy of adult T-cell leukemia cells. Leuk Res. 18, 79–84 (1994).

    CAS  PubMed  Google Scholar 

  98. Musacchio, A. & Hardwick, K. G. The spindle checkpoint: structural insights into dynamic signalling. Nature Rev. Mol. Cell Biol. 3, 731–741 (2002).

    CAS  Google Scholar 

  99. Iwanaga, Y. et al. Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Res. 67, 160–166 (2007).

    CAS  PubMed  Google Scholar 

  100. Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001).

    CAS  PubMed  Google Scholar 

  101. Jin, D. Y., Spencer, F. & Jeang, K. T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93, 81–91 (1998).

    CAS  PubMed  Google Scholar 

  102. Iwanaga, Y., Kasai, T., Kibler, K. & Jeang, K. T. Characterization of regions in hsMAD1 needed for binding hsMAD2. A polymorphic change in an hsMAD1 leucine zipper affects MAD1-MAD2 interaction and spindle checkpoint function. J. Biol. Chem. 277, 31005–31013 (2002).

    CAS  PubMed  Google Scholar 

  103. Grimwade, D. et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 92, 2322–2333 (1998).

    CAS  PubMed  Google Scholar 

  104. Byrd, J. C. et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100, 4325–4336 (2002).

    CAS  PubMed  Google Scholar 

  105. Liu, B., Hong, S., Tang, Z., Yu, H. & Giam, C. Z. HTLV-I Tax directly binds the Cdc20-associated anaphase-promoting complex and activates it ahead of schedule. Proc. Natl Acad. Sci. USA 102, 63–68 (2005).

    CAS  PubMed  Google Scholar 

  106. Leao, M., Anderton, E., Wade, M., Meekings, K. & Allday, M. J. Epstein-barr virus-induced resistance to drugs that activate the mitotic spindle assembly checkpoint in Burkitt's lymphoma cells. J. Virol. 81, 248–260 (2007).

    CAS  PubMed  Google Scholar 

  107. Marriott, S. J., Lemoine, F. J. & Jeang, K. T. Damaged DNA and miscounted chromosomes: human T cell leukemia virus type I tax oncoprotein and genetic lesions in transformed cells. J. Biomed. Sci. 9, 292–298 (2002).

    CAS  PubMed  Google Scholar 

  108. Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002).

    CAS  PubMed  Google Scholar 

  109. Park, H. U., Jeong, J. H., Chung, J. H. & Brady, J. N. Human T-cell leukemia virus type 1 Tax interacts with Chk1 and attenuates DNA-damage induced G2 arrest mediated by Chk1. Oncogene 23, 4966–4974 (2004).

    CAS  PubMed  Google Scholar 

  110. Haoudi, A. & Semmes, O. J. The HTLV-1 tax oncoprotein attenuates DNA damage induced G1 arrest and enhances apoptosis in p53 null cells. Virology 305, 229–239 (2003).

    CAS  PubMed  Google Scholar 

  111. Jeang, K. T., Widen, S. G., Semmes, O. J. & Wilson, S. H. HTLV-I trans-activator protein, tax, is a trans-repressor of the human beta-polymerase gene. Science 247, 1082–1084 (1990).

    CAS  PubMed  Google Scholar 

  112. Philpott, S. M. & Buehring, G. C. Defective DNA repair in cells with human T-cell leukemia/bovine leukemia viruses: role of tax gene. J. Natl Cancer Inst. 91, 933–942 (1999).

    CAS  PubMed  Google Scholar 

  113. Kao, S. Y., Lemoine, F. J. & Marriott, S. J. p53-independent induction of apoptosis by the HTLV-I tax protein following UV irradiation. Virology 291, 292–298 (2001).

    CAS  PubMed  Google Scholar 

  114. Morimoto, H., Tsukada, J., Kominato, Y. & Tanaka, Y. Reduced expression of human mismatch repair genes in adult T-cell leukemia. Am. J. Hematol. 78, 100–107 (2005).

    CAS  PubMed  Google Scholar 

  115. Bellon, M. et al. Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia. Int. J. Cancer 119, 2090–2097 (2006).

    CAS  PubMed  Google Scholar 

  116. Gabet, A. S. et al. Inactivation of hTERT transcription by Tax. Oncogene 22, 3734–3741 (2003).

    CAS  PubMed  Google Scholar 

  117. Majone, F. & Jeang, K. T. Clastogenic effect of the human T-cell leukemia virus type I Tax oncoprotein correlates with unstabilized DNA breaks. J. Biol. Chem. 275, 32906–32910 (2000).

    CAS  PubMed  Google Scholar 

  118. Majone, F., Luisetto, R., Zamboni, D., Iwanaga, Y. & Jeang, K. T. Ku protein as a potential human T-cell leukemia virus type 1 (HTLV-1) Tax target in clastogenic chromosomal instability of mammalian cells. Retrovirology 2, 45 (2005).

    PubMed  PubMed Central  Google Scholar 

  119. Wilkie, A. O., Lamb, J., Harris, P. C., Finney, R. D. & Higgs, D. R. A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature 346, 868–871 (1990).

    CAS  PubMed  Google Scholar 

  120. Morin, G. B. Recognition of a chromosome truncation site associated with α-thalassaemia by human telomerase. Nature 353, 454–456 (1991).

    CAS  PubMed  Google Scholar 

  121. Flint, J. et al. Healing of broken human chromosomes by the addition of telomeric repeats. Am. J. Hum. Genet. 55, 505–512 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kubuki, Y. et al. Telomerase activity and telomere length as prognostic factors of adult T-cell leukemia. Leuk. Lymphoma 46, 393–399 (2005).

    CAS  PubMed  Google Scholar 

  123. Uchida, N. et al. Correlation of telomerase activity with development and progression of adult T-cell leukemia. Leuk. Res. 23, 311–316 (1999).

    CAS  PubMed  Google Scholar 

  124. Tabakin-Fix, Y., Azran, I., Schavinky-Khrapunsky, Y., Levy, O. & Aboud, M. Functional inactivation of p53 by human T-cell leukemia virus type 1 Tax protein: mechanisms and clinical implications. Carcinogenesis 27, 673–681 (2006).

    CAS  PubMed  Google Scholar 

  125. Pise-Masison, C. A. et al. Inactivation of p53 by human T-cell lymphotropic virus type 1 Tax requires activation of the NF-κB pathway and is dependent on p53 phosphorylation. Mol. Cell Biol. 20, 3377–3386 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ariumi, Y. et al. HTLV-1 tax oncoprotein represses the p53-mediated trans-activation function through coactivator CBP sequestration. Oncogene 19, 1491–1499 (2000). References 125 and 126 provide insight into the inactivation of p53 by Tax.

    CAS  PubMed  Google Scholar 

  127. Miyazato, A., Sheleg, S., Iha, H., Li, Y. & Jeang, K. T. Evidence for NFκB- and CBP-independent repression of p53's transcriptional activity by human T-cell leukemia virus type 1 Tax in mouse embryo and primary human fibroblasts. J. Virol. 79, 9346–9350 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Gaudray, G. et al. The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J. Virol. 76, 12813–12822 (2002). This was the first conclusive report of an HBZ transcript in the antisense strand of the HTLV-1 genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Larocca, D., Chao, L. A., Seto, M. H. & Brunck, T. K. Human T-cell leukemia virus minus strand transcription in infected T-cells. Biochem. Biophys. Res. Commun. 163, 1006–1013 (1989).

    CAS  PubMed  Google Scholar 

  130. Basbous, J. et al. The HBZ factor of human T-cell leukemia virus type I dimerizes with transcription factors JunB and c-Jun and modulates their transcriptional activity. J. Biol. Chem. 278, 43620–43627 (2003).

    CAS  PubMed  Google Scholar 

  131. Mesnard, J. M., Barbeau, B. & Devaux, C. HBZ, a new important player in the mystery of adult T-cell leukemia. Blood 108, 3979–3982 (2006).

    CAS  PubMed  Google Scholar 

  132. Thebault, S., Basbous, J., Hivin, P., Devaux, C. & Mesnard, J. M. HBZ interacts with JunD and stimulates its transcriptional activity. FEBS Lett. 562, 165–170 (2004).

    CAS  PubMed  Google Scholar 

  133. Cavanagh, M. H. et al. HTLV-I antisense transcripts initiating in the 3'LTR are alternatively spliced and polyadenylated. Retrovirology 3, 15 (2006).

    PubMed  PubMed Central  Google Scholar 

  134. Satoh, M. et al. Involvement of IL-2/IL-2R system activation by parasite antigen in polyclonal expansion of CD4(+)25(+) HTLV-1-infected T-cells in human carriers of both HTLV-1 and S. stercoralis. Oncogene 21, 2466–2475 (2002).

    CAS  PubMed  Google Scholar 

  135. Satou, Y., Yasunaga, J., Yoshida, M. & Matsuoka, M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc. Natl Acad. Sci. USA 103, 720–725 (2006). Provided evidence that proliferative activity is supplied to virus infected cells through HBZ RNA.

    CAS  PubMed  Google Scholar 

  136. Switzer, W. M. et al. Ancient origin and molecular features of the novel human T-lymphotropic virus type 3 revealed by complete genome analysis. J. Virol. 80, 7427–7438 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Arnold, J. et al. Enhancement of infectivity and persistence in vivo by HBZ, a natural antisense coded protein of HTLV-1. Blood 107, 3976–3982 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Calin, G. A. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

    CAS  PubMed  Google Scholar 

  139. Yamada, Y. et al. A new G-CSF-supported combination chemotherapy, LSG15, for adult T-cell leukaemia-lymphoma: Japan Clinical Oncology Group Study 9303. Br. J. Haematol. 113, 375–382 (2001).

    CAS  PubMed  Google Scholar 

  140. Mori, N. et al. Constitutive activation of NF-κB in primary adult T-cell leukemia cells. Blood 93, 2360–2368 (1999).

    CAS  PubMed  Google Scholar 

  141. Satou, Y. et al. Proteasome inhibitor, bortezomib, potently inhibits the growth of adult T-cell leukemia cells both in vivo and in vitro. Leukemia 18, 1357–1363 (2004).

    CAS  PubMed  Google Scholar 

  142. Watanabe, M. et al. Dual targeting of transformed and untransformed HTLV-1-infected T cells by DHMEQ, a potent and selective inhibitor of NF-κB, as a strategy for chemoprevention and therapy of adult T-cell leukemia. Blood 106, 2462–2471 (2005).

    CAS  PubMed  Google Scholar 

  143. Albert, J. M., Kim, K. W., Cao, C. & Lu, B. Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol. Cancer Ther. 5, 1183–1189 (2006).

    CAS  PubMed  Google Scholar 

  144. Luo, Y. et al. Potent and selective inhibitors of Akt kinases slow the progress of tumors in vivo. Mol. Cancer Ther. 4, 977–986 (2005).

    CAS  PubMed  Google Scholar 

  145. Utsunomiya, A. et al. Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 27, 15–20 (2001).

    CAS  PubMed  Google Scholar 

  146. Okamura, J. et al. Allogeneic stem-cell transplantation with reduced conditioning intensity as a novel immunotherapy and antiviral therapy for adult T-cell leukemia/lymphoma. Blood 105, 4143–4145 (2005).

    CAS  PubMed  Google Scholar 

  147. Harashima, N. et al. Graft-versus-Tax response in adult T-cell leukemia patients after hematopoietic stem cell transplantation. Cancer Res. 64, 391–399 (2004).

    CAS  PubMed  Google Scholar 

  148. Peloponese, J. M., Yeung, M. L. & Jeang, K. T. Modulation of nuclear factor-κB by human T cell leukemia virus type 1 Tax protein: implications for oncogenesis and inflammation. Immunol. Res. 34, 1–12 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L.-M. Huang for critical reading of this manuscript, and A. Pearl-Jacobvitz and J.-M. Peloponese for help with manuscript preparation. We apologize to investigators whose contributions could not be included owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-Teh Jeang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Kuan-Teh Jeang's laboratory homepage

HTLV network

Kyoto University Institute for Virus Research

Glossary

Deltaretrovirus

A genus of the retroviridae family, whose members include HTLV-1 and bovine leukaemia virus, amongst others.

Provirus

Usually represents the integrated DNA form of retroviruses.

Helper T cells

A subset of lymphocytes that activate the immune system. Helper cells enhance the functions of B cells, cytotoxic T cells and macrophages.

Regulatory T cells (TReg cells)

Also known as suppressor T cells. These cells function in establishing immune tolerance.

Parenteral

A route to introduce material into the body by injection or infusion.

Gag complex

Gag is a retroviral structural protein that wraps the retroviral RNA genome.

Long terminal repeat

A repeated sequence, several hundred base pairs long, found at the 5′ and the 3′ ends of the retroviral genome.

Memory T-cell subpopulation

A specialized population of T lymphocytes that recognizes foreign antigens. Memory T cells mount a faster and stronger T-cell response against antigens that they have been previously exposed to.

Human papillomavirus

A small DNA virus that causes cervical cancer.

PDZ domains

PDZ is an abbreviation using the first letters of three proteins — post synaptic density protein 95 (PSD95), Drosophila discs large 1 tumour suppressor (DLG1) and zona occludens 1 (ZO1). These three proteins were the first to be described as sharing a domain that specifies protein–protein association and the association of transmembrane proteins to the cytoskeleton of the cell.

Wnt

A protein family of highly conserved secreted signalling molecules that regulate cell–cell interactions during embryogenesis. Wnt protein functions have also been implicated in cancer development.

Frizzled

Frizzled proteins are seven-transmembrane molecules that act as receptors for Wnt proteins.

Hepatitis B virus

A virus that has been associated with hepatocellular cancers.

Epstein–Barr virus

A herpes virus that has been linked to Burkitt lymphoma and nasopharyngeal carcinoma.

Clastogenic

A term denoting a breakage in a chromosome.

Base excision repair

A cellular mechanism to repair bases in DNA that are mutated, for example by deamination or alkylation. Base excision repair removes and repairs the mutated base alone.

Nucleotide excision repair

This type of DNA repair is used by cells after UV irradiation. Nucleotide excision repair enzymes recognize bulky distortions in DNA and excise a short single-stranded DNA stretch that includes the bulky lesion. Defects in NER lead to diseases such as Xeroderma pigmentosum and Cockayne syndrome.

Mismatch repair

A repair system that removes the erroneous insertion, deletion and mis-incorporation of bases during DNA replication, usually on the newly synthesized strand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, M., Jeang, KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 7, 270–280 (2007). https://doi.org/10.1038/nrc2111

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing