Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human papillomavirus oncoproteins: pathways to transformation

Key Points

  • Human papillomaviruses (HPVs) are the causative agents of over 99% of cervical cancers. Cervical cancer is the second largest cause of cancer deaths in women worldwide.

  • Infection by high-risk HPV types is necessary but not sufficient for progression to cancer. Mutations in cellular genes and chromosomal rearrangements induced by genomic instabilities are important contributing events.

  • HPV E6 and E7 are the primary transforming viral proteins and E5 enhances proliferation and may contribute to cancer progression.

  • A primary target of E7 is the retinoblastoma (Rb) family of proteins that control the activity of E2F transcription factors, which are key regulators of S phase genes. Inactivation of Rb is important for the differentiation-dependent productive viral lifecycle and for tumour progression.

  • The efficient abrogation of Rb function by E7 leads to increased levels of p53 and, consequently, the E6 proteins have evolved to target p53 for degradation. E6 also activates telomerase expression and modulates the activities of PDZ domain-containing proteins and tumour necrosis factor receptors.

  • E7 proteins also alter cell cycle control through interactions with histone deacetylases, cyclins and cyclin-dependent kinase inhibitors.

  • E6 and E7 induce genomic instability through multiple mechanisms, including aberrant centrosome duplication.

  • E6 and E7 also target cytokine expression to modulate cell proliferation and interferon responses, contributing to immune evasion.

  • E5 binds to B cell receptor-associated protein 31 in the endoplasmic reticulum to control trafficking of proteins and to the vacuolar ATPase in endosomes to modulate epidermal growth factor receptor turnover and maintain constitutive signalling.

Abstract

An association between human papillomavirus (HPV) infection and the development of cervical cancer was initially reported over 30 years ago, and today there is overwhelming evidence that certain subtypes of HPV are the causative agents of these malignancies. The p53 and retinoblastoma proteins are well-characterized targets of the HPV E6 and E7 oncoproteins, but recent studies have shown that the alteration of additional pathways are equally important for transformation. These additional factors are crucial regulators of cell cycle progression, telomere maintenance, apoptosis and chromosomal stability. Understanding how HPV oncoproteins modify these activities provides novel insights into the basic mechanisms of oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The life cycle of human papillomaviruses.
Figure 2: Molecular mechanisms by which the human papillomavirus oncoproteins cooperate to induce cervical carcinogenesis.
Figure 3: The human papillomavirus E7 oncoprotein affects numerous cellular processes through interactions with multiple host cell proteins.
Figure 4: Cellular proteins and signalling pathways affected by the human papillomavirus E6 oncoprotein.
Figure 5: High-risk E5 interactions with cellular pathways and factors.

Similar content being viewed by others

References

  1. de Villiers, E. M., Fauquet, C., Broker, T. R., Bernard, H. U. & zur Hausen, H. Classification of papillomaviruses. Virology 324, 17–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999). Shows that infection by high-risk HPV types is necessary for the development of cervical cancers.

    Article  CAS  PubMed  Google Scholar 

  3. Parkin, D. M. & Bray, F. Chapter 2: the burden of HPV-related cancers. Vaccine 24, (Suppl. 3), 11–25 (2006).

    Article  Google Scholar 

  4. Duensing, S. & Munger, K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int. J. Cancer 109, 157–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Howley, P. M. & Lowy, D. R. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2299–2354 (Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  6. Cheng, S., Schmidt-Grimminger, D. C., Murant, T., Broker, T. R. & Chow, L. T. Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev. 9, 2335–2349 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989). Shows that E7 binds to the retinoblastoma protein RB.

    Article  CAS  PubMed  Google Scholar 

  8. Gage, J. R., Meyers, C. & Wettstein, F. O. The E7 proteins of the nononcogenic human papillomavirus type 6b (HPV-6b) and of the oncogenic HPV-16 differ in retinoblastoma protein binding and other properties. J. Virol. 64, 723–730 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Munger, K. et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099–4105 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DiMaio, D. & Mattoon, D. Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene 20, 7866–7873 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. zur Hausen, H. Papillomaviruses and cancer: from basic studies to clinical application. Nature Rev. Cancer 2, 342–350 (2002).

    Article  CAS  Google Scholar 

  13. Ziegert, C. et al. A comprehensive analysis of HPV integration loci in anogenital lesions combining transcript and genome-based amplification techniques. Oncogene 22, 3977–3984 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, P. P., Friedman, C. L., Bryant, E. M. & McDougall, J. K. Viral integration and fragile sites in human papillomavirus-immortalized human keratinocyte cell lines. Genes Chromosom. Cancer 5, 150–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Stubenrauch, F., Lim, H. B. & Laimins, L. A. Differential requirements for conserved E2 binding sites in the life cycle of oncogenic human papillomavirus type 31. J. Virol. 72, 1071–1077 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwarz, E. et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314, 111–114 (1985). Shows that E6 and E7 are expressed in HPV-induced cervical cancer cells.

    Article  CAS  PubMed  Google Scholar 

  17. Baker, C. C. et al. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J. Virol. 61, 962–971 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeon, S., Allen-Hoffmann, B. L. & Lambert, P. F. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J. Virol. 69, 2989–2997 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jeon, S. & Lambert, P. F. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc. Natl Acad. Sci. USA 92, 1654–1658 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thierry, F. & Yaniv, M. The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J. 6, 3391–3397 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Francis, D. A., Schmid, S. I. & Howley, P. M. Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J. Virol. 74, 2679–2686 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goodwin, E. C. & DiMaio, D. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc. Natl Acad. Sci. USA 97, 12513–12518 (2000). References 20–22 show that introduction of high-level expression of E2 into cervical cancer cells results in transcriptional repression of the E6 and E7 early genes and suppression of cell growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kadaja, M., Isok-Paas, H., Laos, T., Ustav, E. & Ustav, M. Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog. 5, e1000397 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. McLaughlin-Drubin, M. E. & Munger, K. Oncogenic activities of human papillomaviruses. Virus Res. 143, 195–208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McLaughlin-Drubin, M. E. & Munger, K. The human papillomavirus E7 oncoprotein. Virology 384, 335–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Howie, H. L., Katzenellenbogen, R. A. & Galloway, D. A. Papillomavirus E6 proteins. Virology 384, 324–334 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R. & Schiller, J. T. HPV 16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8, 3905–3910 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Munger, K., Phelps, W. C., Bubb, V., Howley, P. M. & Schlegel, R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63, 4417–4421 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. McCance, D. J., Kopan, R., Fuchs, E. & Laimins, L. A. Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc. Natl Acad. Sci. USA 85, 7169–7173 (1988). Shows that expression of HPV 16 proteins induces histological changes in tissue culture models that are identical to those seen in HPV-induced cervical lesions in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arbeit, J. M., Howley, P. M. & Hanahan, D. Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc. Natl Acad. Sci. USA 93, 2930–2935 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Riley, R. R. et al. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res. 63, 4862–4871 (2003).

    CAS  PubMed  Google Scholar 

  32. Kaur, P. & McDougall, J. K. Characterization of primary human keratinocytes transformed by human papillomavirus type 18. J. Virol. 62, 1917–1924 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Durst, M., Gallahan, D., Jay, G. & Rhim, J. S. Glucocorticoid-enhanced neoplastic transformation of human keratinocytes by human papillomavirus type 16 and an activated ras oncogene. Virology 173, 767–771 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Pei, X. F., Meck, J. M., Greenhalgh, D. & Schlegel, R. Cotransfection of HPV-18 and v-fos DNA induces tumorigenicity of primary human keratinocytes. Virology 196, 855–860 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Lammens, T., Li, J., Leone, G. & De Veylder, L. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol. 19, 111–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. DeGregori, J. & Johnson, D. G. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr. Mol. Med. 6, 739–748 (2006).

    CAS  PubMed  Google Scholar 

  38. Harbour, J. W. & Dean, D. C. Chromatin remodeling and Rb activity. Curr. Opin. Cell Biol. 12, 685–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Stevaux, O. & Dyson, N. J. A revised picture of the E2F transcriptional network and RB function. Curr. Opin. Cell Biol. 14, 684–691 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Chellappan, S. et al. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc. Natl Acad. Sci. USA 89, 4549–4553 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zerfass, K. et al. Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J. Virol. 69, 6389–6399 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hwang, S. G., Lee, D., Kim, J., Seo, T. & Choe, J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J. Biol. Chem. 277, 2923–2930 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Longworth, M. S. & Laimins, L. A. The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J. Virol. 78, 3533–3541 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brehm, A. et al. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 18, 2449–2458 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McLaughlin-Drubin, M. E., Huh, K. W. & Munger, K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J. Virol. 82, 8695–8705 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Longworth, M. S., Wilson, R. & Laimins, L. A. HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. EMBO J. 24, 1821–1830 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boyer, S. N., Wazer, D. E. & Band, V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 56, 4620–4624 (1996).

    CAS  PubMed  Google Scholar 

  49. Jones, D. L., Thompson, D. A. & Munger, K. Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 239, 97–107 (1997). Shows that E7 destabilizes RB and leads to stabilization of p53.

    Article  CAS  PubMed  Google Scholar 

  50. Shin, M. K., Balsitis, S., Brake, T. & Lambert, P. F. Human papillomavirus E7 oncoprotein overrides the tumor suppressor activity of p21Cip1 in cervical carcinogenesis. Cancer Res. 69, 5656–5663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deshpande, A., Sicinski, P. & Hinds, P. W. Cyclins and cdks in development and cancer: a perspective. Oncogene 24, 2909–2915 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Jones, D. L., Alani, R. M. & Munger, K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 11, 2101–2111 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zerfass-Thome, K. et al. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13, 2323–2330 (1996).

    CAS  PubMed  Google Scholar 

  54. Funk, J. O. et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11, 2090–2100 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He, W., Staples, D., Smith, C. & Fisher, C. Direct activation of cyclin-dependent kinase 2 by human papillomavirus E7. J. Virol. 77, 10566–10574 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nguyen, C. L. & Munger, K. Direct association of the HPV16 E7 oncoprotein with cyclin A/CDK2 and cyclin E/CDK2 complexes. Virology 380, 21–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Katich, S. C., Zerfass-Thome, K. & Hoffmann, I. Regulation of the Cdc25A gene by the human papillomavirus type 16 E7 oncogene. Oncogene 20, 543–550 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Nguyen, D. X., Westbrook, T. F. & McCance, D. J. Human papillomavirus type 16 E7 maintains elevated levels of the cdc25A tyrosine phosphatase during deregulation of cell cycle arrest. J. Virol. 76, 619–632 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blomberg, I. & Hoffmann, I. Ectopic expression of Cdc25A accelerates the G1/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol. Cell. Biol. 19, 6183–6194 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Demers, G. W., Halbert, C. L. & Galloway, D. A. Elevated wild-type p53 protein levels in human epithelial cell lines immortalized by the human papillomavirus type 16 E7 gene. Virology 198, 169–174 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Eichten, A. et al. Molecular pathways executing the “trophic sentinel” response in HPV-16 E7-expressing normal human diploid fibroblasts upon growth factor deprivation. Virology 319, 81–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Huibregtse, J. M., Scheffner, M. & Howley, P. M. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10, 4129–4135 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993). Shows that high-risk E6 forms a complex with E6AP and p53 to promote p53 ubiquitylation and degradation.

    Article  CAS  PubMed  Google Scholar 

  65. Lechner, M. S. & Laimins, L. A. Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J. Virol. 68, 4262–4273 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Brimer, N., Lyons, C. & Vande Pol, S. B. Association of E6AP (UBE3A) with human papillomavirus type 11 E6 protein. Virology 358, 303–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Li, X. & Coffino, P. High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J. Virol. 70, 4509–4516 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Patel, D., Huang, S. M., Baglia, L. A. & McCance, D. J. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 18, 5061–5072 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zimmermann, H., Degenkolbe, R., Bernard, H. U. & O'Connor, M. J. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J. Virol. 73, 6209–6219 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kumar, A. et al. Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol. Cell. Biol. 22, 5801–5812 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crook, T., Fisher, C., Masterson, P. J. & Vousden, K. H. Modulation of transcriptional regulatory properties of p53 by HPV E6. Oncogene 9, 1225–1230 (1994).

    CAS  PubMed  Google Scholar 

  72. Marin, M. C. et al. Viral oncoproteins discriminate between p53 and the p53 homolog p73. Mol. Cell. Biol. 18, 6316–6324 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roth, J. & Dobbelstein, M. Failure of viral oncoproteins to target the p53-homologue p51A. J. Gen. Virol. 80, 3251–3255 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, Y. et al. Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. J. Virol. 73, 7297–7307 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Thomas, M. et al. Human papillomaviruses, cervical cancer and cell polarity. Oncogene 27, 7018–7030 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, C., Wooldridge, T. R. & Laimins, L. A. Analysis of the roles of E6 binding to E6TP1 and nuclear localization in the human papillomavirus type 31 life cycle. Virology 358, 201–210 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Nguyen, M. L., Nguyen, M. M., Lee, D., Griep, A. E. & Lambert, P. F. The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6's induction of epithelial hyperplasia in vivo. J. Virol. 77, 6957–6964 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Artandi, S. E. & DePinho, R. A. Telomeres and telomerase in cancer. Carcinogenesis 31, 9–18.

  80. Wise-Draper, T. M. & Wells, S. I. Papillomavirus E6 and E7 proteins and their cellular targets. Front. Biosci. 13, 1003–1017 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Katzenellenbogen, R. A. et al. NFX1–123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16 E6-expressing cells. J. Virol. 81, 3786–3796 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stoppler, H., Hartmann, D. P., Sherman, L. & Schlegel, R. The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length. J. Biol. Chem. 272, 13332–13337 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, A. et al. Telomere attrition predominantly occurs in precursor lesions during in vivo carcinogenic process of the uterine cervix. Oncogene 23, 7441–7447 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Spardy, N., Duensing, A., Hoskins, E. E., Wells, S. I. & Duensing, S. HPV-16 E7 reveals a link between DNA replication stress, fanconi anemia D2 protein, and alternative lengthening of telomere-associated promyelocytic leukemia bodies. Cancer Res. 68, 9954–9963 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schiffman, M., Castle, P. E., Jeronimo, J., Rodriguez, A. C. & Wacholder, S. Human papillomavirus and cervical cancer. Lancet 370, 890–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. White, A. E., Livanos, E. M. & Tlsty, T. D. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 8, 666–677 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. zur Hausen, H. Immortalization of human cells and their malignant conversion by high risk human papillomavirus genotypes. Semin. Cancer Biol. 9, 405–411 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Duensing, S., Duensing, A., Crum, C. P. & Munger, K. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 61, 2356–2360 (2001). Shows that E7 induces abnormal centrosome synthesis, leading to genomic instability.

    CAS  PubMed  Google Scholar 

  89. Bibbo, M., Dytch, H. E., Alenghat, E., Bartels, P. H. & Wied, G. L. DNA ploidy profiles as prognostic indicators in CIN lesions. Am. J. Clin. Pathol. 92, 261–265 (1989).

    Article  CAS  PubMed  Google Scholar 

  90. Steinbeck, R. G. Proliferation and DNA aneuploidy in mild dysplasia imply early steps of cervical carcinogenesis. Acta Oncol. 36, 3–12 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Rihet, S., Lorenzato, M. & Clavel, C. Oncogenic human papillomaviruses and ploidy in cervical lesions. J. Clin. Pathol. 49, 892–896 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Duensing, A. et al. Centrosome overduplication, chromosomal instability, and human papillomavirus oncoproteins. Environ. Mol. Mutagen. 50, 741–747 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Winkler, B. et al. Koilocytotic lesions of the cervix. The relationship of mitotic abnormalities to the presence of papillomavirus antigens and nuclear DNA content. Cancer 53, 1081–1087 (1984).

    Article  CAS  PubMed  Google Scholar 

  94. Duensing, S. et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc. Natl Acad. Sci. USA 97, 10002–10007 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Duensing, A. et al. Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 26, 6280–6288 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Duensing, A. et al. Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 25, 2943–2949 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Duensing, S. & Munger, K. Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J. Virol. 77, 12331–12335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nguyen, C. L., Eichwald, C., Nibert, M. L. & Munger, K. Human papillomavirus type 16 E7 oncoprotein associates with the centrosomal component γ-tubulin. J. Virol. 81, 13533–13543 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Patel, D., Incassati, A., Wang, N. & McCance, D. J. Human papillomavirus type 16 E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2–M-phase proteins. Cancer Res. 64, 1299–1306 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Finzer, P., Aguilar-Lemarroy, A. & Rosl, F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett. 188, 15–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Thompson, D. A. et al. The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene 15, 3025–3035 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Thomas, J. T. & Laimins, L. A. Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J. Virol. 72, 1131–1137 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Duensing, S. & Munger, K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 62, 7075–7082 (2002).

    CAS  PubMed  Google Scholar 

  104. Kessis, T. D., Connolly, D. C., Hedrick, L. & Cho, K. R. Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene 13, 427–431 (1996).

    CAS  PubMed  Google Scholar 

  105. Moody, C. A. & Laimins, L. A. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog. 5, e1000605 (2009). Shows that E6 and E7 activate the ATM DNA damage response and that this is important for productive replication in differentiating cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Spardy, N. et al. Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res. 69, 7022–7029 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Kutler, D. I. et al. Human papillomavirus DNA and p53 polymorphisms in squamous cell carcinomas from Fanconi anemia patients. J. Natl Cancer Inst. 95, 1718–1721 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Spardy, N. et al. The human papillomavirus type 16 E7 oncoprotein activates the Fanconi anemia (FA) pathway and causes accelerated chromosomal instability in FA cells. J. Virol. 81, 13265–13270 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Moody, C. A., Fradet-Turcotte, A., Archambault, J. & Laimins, L. A. Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. Proc. Natl Acad. Sci. USA 104, 19541–19546 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chiarugi, P. & Giannoni, E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem. Pharmacol. 76, 1352–1364 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. McCormack, S. J., Brazinski, S. E., Moore, J. L. Jr, Werness, B. A. & Goldstein, D. J. Activation of the focal adhesion kinase signal transduction pathway in cervical carcinoma cell lines and human genital epithelial cells immortalized with human papillomavirus type 18. Oncogene 15, 265–274 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Tong, X. & Howley, P. M. The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc. Natl Acad. Sci. USA 94, 4412–4417 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vande Pol, S. B., Brown, M. C. & Turner, C. E. Association of bovine papillomavirus type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif. Oncogene 16, 43–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Du, M., Fan, X., Hong, E. & Chen, J. J. Interaction of oncogenic papillomavirus E6 proteins with fibulin-1. Biochem. Biophys. Res. Commun. 296, 962–969 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Huh, K. W. et al. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc. Natl Acad. Sci. USA 102, 11492–11497 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Basile, J. R., Zacny, V. & Munger, K. The cytokines tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein. J. Biol. Chem. 276, 22522–22528 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Filippova, M., Song, H., Connolly, J. L., Dermody, T. S. & Duerksen-Hughes, P. J. The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J. Biol. Chem. 277, 21730–21739 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Filippova, M., Parkhurst, L. & Duerksen-Hughes, P. J. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J. Biol. Chem. 279, 25729–25744 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Garnett, T. O., Filippova, M. & Duerksen-Hughes, P. J. Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ. 13, 1915–1926 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Garnett, T. O. & Duerksen-Hughes, P. J. Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch. Virol. 151, 2321–2335 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Beglin, M., Melar-New, M. & Laimins, L. Human papillomaviruses and the interferon response. J. Interferon Cytokine Res. 29, 629–635 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chang, Y. E. & Laimins, L. A. Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J. Virol. 74, 4174–4182 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ronco, L. V., Karpova, A. Y., Vidal, M. & Howley, P. M. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 12, 2061–2072 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Park, J. S. et al. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J. Biol. Chem. 275, 6764–6769 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Barnard, P. & McMillan, N. A. The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-α. Virology 259, 305–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Hebner, C. M., Wilson, R., Rader, J., Bidder, M. & Laimins, L. A. Human papillomaviruses target the double-stranded RNA protein kinase pathway. J. Gen. Virol. 87, 3183–3193 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Kazemi, S. et al. Control of α subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation by the human papillomavirus type 18 E6 oncoprotein: implications for eIF2α-dependent gene expression and cell death. Mol. Cell. Biol. 24, 3415–3429 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hebner, C., Beglin, M. & Laimins, L. A. Human papillomavirus E6 proteins mediate resistance to interferon-induced growth arrest through inhibition of p53 acetylation. J. Virol. 81, 12740–12747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Conrad, M., Bubb, V. J. & Schlegel, R. The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J. Virol. 67, 6170–6178 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Disbrow, G. L., Hanover, J. A. & Schlegel, R. Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J. Virol. 79, 5839–5846 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Disbrow, G. L., Sunitha, I., Baker, C. C., Hanover, J. & Schlegel, R. Codon optimization of the HPV-16 E5 gene enhances protein expression. Virology 311, 105–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Petti, L., Nilson, L. A. & DiMaio, D. Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO J. 10, 845–855 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bouvard, V., Matlashewski, G., Gu, Z. M., Storey, A. & Banks, L. The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression. Virology 203, 73–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  136. Valle, G. F. & Banks, L. The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J. Gen. Virol. 76, 1239–1245 (1995).

    Article  PubMed  Google Scholar 

  137. Stoppler, M. C., Straight, S. W., Tsao, G., Schlegel, R. & McCance, D. J. The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology 223, 251–254 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Maufort, J. P., Williams, S. M., Pitot, H. C. & Lambert, P. F. Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis. Cancer Res. 67, 6106–6112 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Maufort, J. P., Shai, A., Pitot, H. C. & Lambert, P. F. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res. 70, 2924–2931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Arias-Pulido, H., Peyton, C. L., Joste, N. E., Vargas, H. & Wheeler, C. M. Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J. Clin. Microbiol. 44, 1755–1762 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chang, J. L. et al. The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J. Biomed. Sci. 8, 206–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Kristiansen, E., Jenkins, A. & Holm, R. Coexistence of episomal and integrated HPV16 DNA in squamous cell carcinoma of the cervix. J. Clin. Pathol. 47, 253–256 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Regan, J. A. & Laimins, L. A. Bap31 is a novel target of the human papillomavirus E5 protein. J. Virol. 82, 10042–10051 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Leechanachai, P., Banks, L., Moreau, F. & Matlashewski, G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7, 19–25 (1992).

    CAS  PubMed  Google Scholar 

  145. Straight, S. W., Herman, B. & McCance, D. J. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J. Virol. 69, 3185–3192 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Ashrafi, G. H., Haghshenas, M., Marchetti, B. & Campo, M. S. E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int. J. Cancer 119, 2105–2112 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Gu, Z. & Matlashewski, G. Effect of human papillomavirus type 16 oncogenes on MAP kinase activity. J. Virol. 69, 8051–8056 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Suprynowicz, F. A. et al. HPV-16 E5 oncoprotein upregulates lipid raft components caveolin-1 and ganglioside GM1 at the plasma membrane of cervical cells. Oncogene 27, 1071–1078 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Harper, D. M. et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367, 1247–1255 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.A.L. is supported by grants from the National Cancer Institute and the National Institute for Allergy and Infectious Diseases. C.A.M. is supported by a K99 Pathway to Independence Award from the National Cancer Institute. We thank K. Simanis for assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laimonis A. Laimins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Papanicolau smear

A method used to screen for the cellular changes that accompany HPV infection and used as a diagnostic for HPV-induced disease.

Episome

An extrachromosomal DNA element such as a plasmid that can replicate independently from host chromosomal DNA.

Organotypic raft culture

An in vitro method for growing keratinocytes at an air–liquid interphase that faithfully duplicates in vivo epithelial differentiation.

HECT family

A group of related E3 ubiquitin protein ligases that contain a conserved C-terminal 350 amino acid long homologous to the E6 C-terminus (HECT) domain that is involved in ubiquitylation of bound substrates.

Telomere

A double-stranded short tandem repeat found at the ends of chromosomes that consists of the sequence TTAGGG and is approximately 10–15 kb in length. Telomeres provide a cap for linear chromosomes and are important in maintaining genomic stability.

Telomerase reverse transcriptase

The catalytic protein subunit of telomerase, an RNA-dependent DNA polymerase that synthesizes telomere repeats at chromosomal ends.

Centrosome

The primary microtubule-organizing centre of human cells, which consists of a pair of centrioles. Centrosomes are duplicated only once before mitosis and are responsible for proper chromosome segregation during cell division.

ATM–ATR pathway

This involves phosphoinositide 3-like kinases important in sensing and repairing DNA damage. ATM is activated in response to double-stranded breaks and ATR is induced on the appearance of single-stranded lesions.

Fanconi anaemia

A rare disease characterized by chromosomal instability and a high incidence of squamous cell carcinomas of the head, neck and anogenital regions.

Anoikis

A form of programmed cell death that is activated when normal cells attempt to divide in the absence of attachment to the extracellular matrix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moody, C., Laimins, L. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10, 550–560 (2010). https://doi.org/10.1038/nrc2886

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2886

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer