Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA interference in the clinic: challenges and future directions

Key Points

  • Many cancer targets are difficult to block with conventional therapies. Although RNA interference (RNAi) as a therapeutic approach is appealing, many challenges to delivery must be overcome.

  • Nanoparticles hold promise for the safe and effective intracellular delivery of RNAi-based molecules.

  • Physiological barriers and systemic toxicity of nanoparticle-based carrier systems create multiple challenges to bringing RNAi-based therapeutics to the clinic.

  • Nanoparticles can be used to help avoid immune-mediated responses to systemic RNAi-based therapy.

  • Solutions to improving tumour specificity and the ability to monitor and control short-term and long-term RNAi-based therapies are crucial next steps before clinical use.

  • As the technology for delivery improves, so we will also need to improve our understanding of the heterogeneity of RNAi processing in different cancer types.

  • Various resistance mechanisms to RNAi-based therapies must be anticipated.

Abstract

Inherent difficulties with blocking many desirable targets using conventional approaches have prompted many to consider using RNA interference (RNAi) as a therapeutic approach. Although exploitation of RNAi has immense potential as a cancer therapeutic, many physiological obstacles stand in the way of successful and efficient delivery. This Review explores current challenges to the development of synthetic RNAi-based therapies and considers new approaches to circumvent biological barriers, to avoid intolerable side effects and to achieve controlled and sustained release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of RNAi following intracellular dsRNA delivery.
Figure 2: Overcoming the biological barriers of RNAi delivery.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-strandedRNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, I. et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369, 29–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kikani, C. K., Dong, L. Q. & Liu, F. “New”-clear functions of PDK1: beyond a master kinase in the cytosol? J. Cell. Biochem. 96, 1157–1162 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Lim, S. T., Mikolon, D., Stupack, D. G. & Schlaepfer, D. D. FERM control of FAK function: implications for cancer therapy. Cell Cycle 7, 2306–2314 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Weihua, Z. et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13, 385–393 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010). This is the first report of using targeted nanoparticles for siRNA delivery in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sashital, D. G. & Doudna, J. A. Structural insights into RNA interference. Curr. Opin. Struct. Biol. 20, 90–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rana, T. M. Illuminating the silence: understanding the structure and function of small RNAs. Nature Rev. Mol. Cell Biol. 8, 23–36 (2007).

    Article  CAS  Google Scholar 

  10. Heo, I. & Kim, V. N. Regulating the regulators: posttranslational modifications of RNA silencing factors. Cell 139, 28–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 565–574 (2002).

    Article  Google Scholar 

  14. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell Biol. 6, 376–385 (2005).

    Article  CAS  Google Scholar 

  17. Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin-5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chu, C. & Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fabbri, M. & Calin, G. A. Beyond genomics: interpreting the 93% of the human genome that does not encode proteins. Curr. Opin. Drug Discov. Devel. 13, 350–358.

  20. Bumcrot, D., Manoharan, M., Koteliansky, V. & Sah, D. W. Y. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chem. Biol. 2, 711–719 (2006).

    Article  CAS  Google Scholar 

  21. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Czauderna, F. et al. Structural variations and stabilizing modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, D. H. & Rossi, J. J. Strategies for silencing human disease using RNA interference. Nature Rev. Genet. 8, 173–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Dobrovolskaia, M. A., Aggarwal, P., Hall, J. B. & McNeil, S. E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 5, 487–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Skinner, S. A., Tutton, P. J. & O'Brien, P. E. Microvascular architecture of experimental colon tumors in the rat. Cancer Res. 50, 2411–2417 (1990).

    CAS  PubMed  Google Scholar 

  26. Decuzzi, P., Causa, F., Ferrari, M. & Netti, P. A. The effective dispersion of nanovectors within the tumor microvasculature. Ann. Biomed. Eng. 34, 633–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64, 3731–3736 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986). This work describes the first observation of the EPR effect in the tumour microenvironment.

    CAS  PubMed  Google Scholar 

  29. Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem. 21, 797–802 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Decuzzi, P. & Ferrari, M. The receptor-mediated endocytosis of nonspherical particles. Biophys. J. 94, 3790–3797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dominska, M. & Dykxhoorn, D. M. Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci. 123, 1183–1189 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Kleeff, J. et al. Pancreatic cancer microenvironment. Int. J. Cancer 121, 699–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Burke, R. S. & Pun, S. H. Extracellular barriers to in Vivo PEI and PEGylated PEI polyplex-mediated gene delivery to the liver. Bioconjug. Chem. 19, 693–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Goodman, T. T., Ng, C. P. & Pun, S. H. 3-D tissue culture systems for the evaluation and optimization of nanoparticle-based drug carriers. Bioconjug. Chem. 19, 1951–1959 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1477–1478 (2004).

    Article  CAS  Google Scholar 

  36. Bartneck, M., Keul, H. A., Zwadlo-Klarwasser, G. & Groll, J. Phagocytosis independent extracellular nanoparticle clearance by human immune cells. Nano Lett. 10, 59–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotech. 23, 457–462 (2005).

    Article  CAS  Google Scholar 

  38. Forsbach, A. et al. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J. Immunol. 180, 3729–3738 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Jackson, A. L. & Linsley, P. S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nature Rev. Drug Discov. 9, 57–67 (2010).

    Article  CAS  Google Scholar 

  40. Robbins, M., Judge, A. & MacLachlan, I. siRNA and innate immunity. Oligonucleotides 19, 89–101 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591–597 (2008). This work shows that TLR3 activation by naked siRNAs can cause an anti-angiogenic off-target effect independently of gene silencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunol. 5, 730–737 (2004).

    Article  CAS  Google Scholar 

  43. Sakamoto, J. H. et al. Enabling individualized therapy through nanotechnology. Pharmacol. Res. 1–31 (2010).

  44. Ma, Z. et al. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun. 330, 755–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Omidi, Y., Barar, J. & Akhtar, S. Toxicogenomics of cationic lipid-based vectors for gene therapy: impact of microarray technology. Curr. Drug Deliv. 2, 429–441 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Dokka, S., Toledo, D., Shi, X., Castranova, V. & Rojanasakul, Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm. Res. 17, 521–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Gutierrez-Puente, Y. et al. Cellular pharmacology of P-ethoxy antisense oligonucleotides targeted to Bcl-2 in a follicular lymphoma cell line. Leuk. Lymphoma 44, 1979–1985 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Landen, C. N. et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65, 6910–6918 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Ahmed, A. A. et al. SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer. Cancer Cell 18, 109–121 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Schroeder, A., Levins, C. G., Cortez, C., Langer, R. & Anderson, D. G. Lipid-based nanotherapeutics for siRNA delivery. J. Intern. Med. 267, 9–21 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, S. H., Jeong, J. H., Lee, S. H., Kim, S. W. & Park, T. G. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Release 129, 107–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotech. 25, 1149–1157 (2007).

    Article  CAS  Google Scholar 

  53. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotech. 26, 561–569 (2008).

    Article  CAS  Google Scholar 

  54. Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hunter, A. C. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv. Drug Deliv. Rev. 58, 1523–1531 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Jain, K., Kesharwani, P., Gupta, U. & Jain, N. K. Dendrimer toxicity: let's meet the challenge. Int. J. Pharm. 394, 122–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Pille, J. Y. et al. Intravenous delivery of anti-RhoA small interfering RNA Loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum. Gene Ther. 17, 1019–1026 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Han, H. D. et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin. Cancer Res. 16, 3910–3922 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu, C. et al. Regulation of tumor angiogenesis by EZH2. Cancer Cell 18, 185–197 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heidel, J. D. et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl Acad. Sci. USA 104, 5715–5721 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takeshita, F. et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc. Natl Acad. Sci. USA 102, 12177–12182 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotech. 21, 635–637 (2003). This study demonstrated that siRNAs can cause miRNA-like translational suppression owing to imperfect complementarity in the seed sequence.

    Article  CAS  Google Scholar 

  63. Jackson, A. L. et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Farh, K. K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Jackson, A. L. et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12, 1197–1205 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Merritt, W. M. et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N. Engl. J. Med. 359, 2641–2650 (2008). This study shows changes in Dicer and Drosha levels in cancer have effects on gene silencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Castanotto, D. et al. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res. 35, 5154–5164 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khan, A. A. et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nature Biotech. 27, 549–555 (2009). This paper demonstrates how exogenous introduction of RNAi can compete with endogenous miRNAs, causing derepression of miRNA-regulated genes.

    Article  CAS  Google Scholar 

  70. Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol. 11, 599–606 (2004).

    Article  CAS  Google Scholar 

  71. Raemdonck, K., Vandenbroucke, R. E., Demeester, J., Sanders, N. N. & De Smedt, S. C. Maintaining the silence: reflections on long-term RNAi. Drug Discov. Today 13, 917–931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takabatake, Y. et al. Chemically modified siRNA prolonged RNA interference in renal disease. Biochem. Biophys. Res. Commun. 363, 432–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Bartlett, D. W. & Davis, M. E. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 31, 322–333 (2006).

    Article  CAS  Google Scholar 

  74. Duncan, R. The dawning era of polymer therapeutics. Nature Rev. Drug Discov. 2, 347–360 (2003).

    Article  CAS  Google Scholar 

  75. Shahzad, M. M. K. et al. Dual targeting of EphA2 and FAK in ovarian carcinoma. Cancer Biol. Ther. 8, 1027–1034 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Hogrefe, R. I. et al. Chemically modified short interfering hybrids (siHYBRIDS): nanoimmunoliposome delivery in vitro and in vivo for RNAi of HER-2. Nucleosides Nucleotides Nucleic Acids 25, 889–907 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Ferrari, M. Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotech. 28, 181–188 (2010).

    Article  CAS  Google Scholar 

  78. Estévez, M. C. et al. Nanoparticle-aptamer conjugates for cancer cell targeting and detection. Methods Mol. Biol. 624, 235–248 (2010).

    Article  PubMed  CAS  Google Scholar 

  79. Kim, S. H., Mok, H., Jeong, J. H., Kim, S. W. & Park, T. G. Comparative evaluation of target-specific GFP gene silencing efficiencies for antisense ODN, synthetic siRNA, and siRNA plasmid complexed with PEI-PEG-FOL conjugate. Bioconjug. Chem. 17, 241–244 (2006).

    Article  PubMed  CAS  Google Scholar 

  80. Passarella, R. J. et al. Targeted nanoparticles that deliver a sustained, specific release of paclitaxel to irradiated tumors. Cancer Res. 70, 4550–4559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tanaka, T. et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 70, 3687–3696 (2010). This work demonstrates the first in vivo validation of multi-staged siRNA delivery for sustained gene silencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Decuzzi, P. & Ferrari, M. Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 29, 377–384 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Ferrari, M. The mathematical engines of nanomedicine. Small 4, 20–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Sanga, S. et al. Mathematical modeling of cancer progression and response to chemotherapy. Expert Rev. Anticancer Ther. 6, 1361–1376 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    CAS  PubMed  Google Scholar 

  86. Alexis, F., Pridgen, E., Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Thall, P. F. & Cook, J. D. Dose-finding based on efficacy-toxicity trade-offs. Biometrics 60, 684–693 (2004).

    Article  PubMed  Google Scholar 

  88. Bruchez, M. J., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Tan, W. B., Jiang, S. & Zhang, Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28, 1565–1571 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Tavares, A. J., Chong, L., Petryayeva, E., Algar, W. R. & Krull, U. J. Quantum dots as contrast agents for in vivo tumor imaging: progress and issues. Anal. Bioanal. Chem. 25 Jul 2010 (doi:10.1007/s00216-010-4010-3).

  91. Hong, H., Zhang, Y. & Cai, W. In vivo imaging of RNA interference. J. Nucl. Med. 51, 169–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, X. Q. et al. Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin. Cancer Res. 6, 3823–3826 (2000).

    CAS  PubMed  Google Scholar 

  93. Kopreski, M. S., Benko, F. A., Kwak, L. W. & Gocke, C. D. Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin. Cancer Res. 5, 1961–1965 (1999).

    CAS  PubMed  Google Scholar 

  94. Swarup, V. & Rajeswari, M. R. Circulating (cell-free) nucleic acids – a promising, non-invasive tool for early detection of several human diseases. FEBS J. 581, 795–799 (2007).

    Article  CAS  Google Scholar 

  95. Abdrakhmanova, A. et al. RNAi and iTRAQ reagents united: targeted quantitation of siRNA-mediated protein silencing in human cells. Anal. Bioanal. Chem. 395, 773–785 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Spielman, R. S. et al. Common genetic variants account for differences in gene expression among ethnic groups. Nature Genet. 39, 226–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Nicoloso, M. S. et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 70, 2789–2798 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Merritt, W. M., Bar-Eli, M. & Sood, A. K. The dicey role of Dicer: implications for RNAi therapy. Cancer Res. 70, 2571–2574 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Diederichs, S. et al. Coexpression of Argonaute-2 enhances RNA interference toward perfect match binding sites. Proc. Natl Acad. Sci. USA 105, 9284–9289 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Portions of this work were supported by the NIH (CA110793, CA109298, P50 CA083639, P50 CA098258, CA128797, RC2GM092599 and U54 CA151668), the Ovarian Cancer Research Fund, Inc. (Program Project Development Grant), the DOD (OC073399, W81XWH-10-1-0158 and BC085265), the Zarrow Foundation, the Laura and John Arnold Foundation and the Betty Anne Asche Murray Distinguished Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Anil K. Sood's homepage

Glossary

RNA interference

(RNAi). Refers to the mechanism of potent and specific gene-silencing caused by double-stranded RNA (dsRNA) produced by endogenous (miRNA) or exogenous (siRNA) sources.

Opsonins

Plasma proteins that act as binding enhancers for phagocytosis.

Reticuloendothelial system

(RES). System composed of scavenging monocytes and macrophages located in the reticular connective tissue (notably the liver, spleen, lung and marrow).

Enhanced permeability and retention

(EPR). The property by which certain sizes of molecules tend to accumulate and remain in tumour tissue more than in normal tissues.

Endocytosis

The active uptake of molecules into a cell by clathrin-dependent and clathrin-independent receptor-mediated endocytosis, pinocytosis and phagocytosis.

Fusogenic lipids

Lipoplexes (containing cationic lipids and nucleic acids) that adopt an inverted hexagonal phase and fuse with anionic membranes resulting in endosomal release.

Fusogenic peptides

Peptides that have cell penetrating properties (such as being highly hydrophobic), which cause cell membrane destabilization and intra-cytoplasmic release.

pH-sensitive lipoplexes

Liposomes that hydrolyse and trigger release of contents owing to subtle drops in pH, such as with endosomal fusion, allowing for endosomal escape.

pH-sensitive polyplexes

Polyplexes (cationic polymer complexed with nucleic acid) that act as proton 'sponges', preventing acidification after endosomal fusion and allowing influx of counter ions, osmotic swelling and endosome rupture.

Aptamer

A DNA or RNA oligonucleotide sequence with a high-affinity binding for specific proteins.

Logic-embedded vector

Vehicles that work in a time-sequential manner to cross biological barriers.

Mesoporous silicon

A biodegradable and biocompatible material made from non-oxidized silicon.

Polyethylene glycol

(PEG). A synthetic polymer that is non-toxic, non-immunogenic and highly water soluble.

Quantum dots

Colloidal semiconductor nanocrystals with optical and electronic properties superior to conventional organic fluorophores that can be used for imaging purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pecot, C., Calin, G., Coleman, R. et al. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11, 59–67 (2011). https://doi.org/10.1038/nrc2966

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2966

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer