Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatial regulation of receptor tyrosine kinases in development and cancer

Key Points

  • The deregulation of receptor tyrosine kinases (RTKs) has been implicated in nearly all forms of human cancer. As such, RTKs are the subject of major ongoing efforts to develop targeted cancer therapies.

  • Because of their broad roles in many crucial cellular processes, RTKs are subject to tight regulation. The regulation of RTK production has been well studied; mounting evidence indicates that spatial regulation of RTKs is also important.

  • RTKs are spatially regulated in two dimensions — lateral and axial. The heterogeneous nature of the plasma membrane yields lateral compartmentalization of RTKs to both nanometre-scale and much larger macrodomains. Axial control of RTKs via endocytosis enables differential signalling from the plasma membrane and/or endosomes.

  • The spatial distribution of RTKs is important for many developmental processes, including directed cell migration and branching morphogenesis. Regulated RTK distribution is also necessary for spatial patterning during cell fate specification and tissue homeostasis.

  • There are many ways in which deregulated spatial control of RTKs may contribute to tumorigenesis. For example, increased RTK production can yield altered plasma membrane distribution and clustering, defective tissue architecture can promote abnormal receptor–receptor and/or receptor–ligand interactions, and defects in vesicular trafficking can increase surface RTK levels and affect the location from which signalling occurs (for example, the plasma membrane versus the endosome).

  • Despite accumulating evidence, the effect of spatial RTK signalling in tumorigenesis and therapeutic response is underappreciated. A three-dimensional view of RTK activity in tumour cells and tissues could yield a more complete understanding of the mechanisms of tumour progression and therapeutic resistance, leading to altered treatment strategies.

Abstract

During development and tissue homeostasis, patterns of cellular organization, proliferation and movement are highly choreographed. Receptor tyrosine kinases (RTKs) have a crucial role in establishing these patterns. Individual cells and tissues exhibit tight spatial control of the RTKs that they express, enabling tissue morphogenesis and function, while preventing unwarranted cell division and migration that can contribute to tumorigenesis. Indeed, RTKs are deregulated in most human cancers and are a major focus of targeted therapeutics. A growing appreciation of the essential role of spatial RTK regulation during development prompts the realization that spatial deregulation of RTKs is likely to contribute broadly to cancer development and may affect the sensitivity and resistance of cancer to pharmacological RTK inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RTK surface abundance and distribution.
Figure 2: Mechanisms controlling RTK surface abundance and distribution.
Figure 3: Spatial control of RTK signalling by cell polarization.
Figure 4: Spatial control of RTK signalling during tissue morphogenesis and homeostasis.
Figure 5: Spatial deregulation of RTKs in tumour tissues.

Similar content being viewed by others

References

  1. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. King, N. & Carroll, S. B. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc. Natl Acad. Sci. USA 98, 15032–15037 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. King, N. The unicellular ancestry of animal development. Dev. Cell 7, 313–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Bethani, I., Skanland, S. S., Dikic, I. & Acker-Palmer, A. Spatial organization of transmembrane receptor signalling. EMBO J. 29, 2677–2688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lemmon, M. A. Ligand-induced ErbB receptor dimerization. Exp. Cell Res. 315, 638–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Himanen, J. P. & Nikolov, D. B. Eph signaling: a structural view. Trends Neurosci. 26, 46–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Clayton, A. H. et al. Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis. J. Biol. Chem. 280, 30392–30399 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Barton, W. A. et al. Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex. Nature Struct. Mol. Biol. 13, 524–532 (2006).

    Article  CAS  Google Scholar 

  10. Clayton, A. H., Tavarnesi, M. L. & Johns, T. G. Unligated epidermal growth factor receptor forms higher order oligomers within microclusters on A431 cells that are sensitive to tyrosine kinase inhibitor binding. Biochemistry 46, 4589–4597 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Ward, C. W., Lawrence, M. C., Streltsov, V. A., Adams, T. E. & McKern, N. M. The insulin and EGF receptor structures: new insights into ligand-induced receptor activation. Trends Biochem. Sci. 32, 129–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, S. et al. Mapping ErbB receptors on breast cancer cell membranes during signal transduction. J. Cell Sci. 120, 2763–2773 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Chung, I. et al. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464, 783–787 (2010). This study demonstrates that unliganded EGFR fluctuates between monomer and dimer states, and that preformed dimers are primed for ligand binding and are distributed asymmetrically across the cell cortex.

    Article  CAS  PubMed  Google Scholar 

  14. Szabo, A., Szollosi, J. & Nagy, P. Coclustering of ErbB1 and ErbB2 revealed by FRET-sensitized acceptor bleaching. Biophys. J. 99, 105–114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McNiven, M. A. Big gulps: specialized membrane domains for rapid receptor-mediated endocytosis. Trends Cell Biol. 16, 487–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Harding, A. S. & Hancock, J. F. Using plasma membrane nanoclusters to build better signaling circuits. Trends Cell Biol. 18, 364–371 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Inder, K. et al. Activation of the MAPK module from different spatial locations generates distinct system outputs. Mol. Biol. Cell 19, 4776–4784 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lajoie, P., Goetz, J. G., Dennis, J. W. & Nabi, I. R. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J. Cell Biol. 185, 381–385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grecco, H. E., Schmick, M. & Bastiaens, P. I. Signaling from the living plasma membrane. Cell 144, 897–909 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Jaqaman, K. et al. Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function. Cell 146, 593–606 (2011). This study demonstrates that the cytoskeleton can control membrane receptor signalling by confining receptor diffusion within given membrane regions that serve to increase their collision frequency and clustering.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abulrob, A. et al. Nanoscale imaging of epidermal growth factor receptor clustering: effects of inhibitors. J. Biol. Chem. 285, 3145–3156 (2010).

    Article  CAS  Google Scholar 

  23. Nagy, P., Claus, J., Jovin, T. M. & Arndt-Jovin, D. J. Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis. Proc. Natl Acad. Sci. USA 107, 16524–16529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Costa, M. N., Radhakrishnan, K. & Edwards, J. S. Monte Carlo simulations of plasma membrane corral-induced EGFR clustering. J. Biotechnol. 151, 261–270 (2011).

    CAS  Google Scholar 

  25. Kaufmann, R., Muller, P., Hildenbrand, G., Hausmann, M. & Cremer, C. Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy. J. Microsc. 242, 46–54 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Salaita, K. et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327, 1380–1385 (2010). This study reveals a spatio-mechanical mechanism whereby EPHA2 signalling is regulated; the authors provide evidence that experimental restriction of ephrin A1 affects EPHA2 activation and suggest that alterations in this mode of control may promote tumour cell invasion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kirchhausen, T. Imaging endocytic clathrin structures in living cells. Trends Cell Biol. 19, 596–605 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lajoie, P. & Nabi, I. R. Lipid rafts, caveolae, and their endocytosis. Int. Rev. Cell. Mol. Biol. 282, 135–163 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated-pit dynamics in living cells. Nature Cell Biol. 1, 1–7 (1999). This first visualization of clathrin-coated pit dynamics in mammalian cells reveals that pits form repeatedly at discrete sites within the plasma membrane and are attached to the cortical cytoskeleton.

    Article  CAS  PubMed  Google Scholar 

  30. Nunez, D. et al. Hotspots organize clathrin-mediated endocytosis by efficient recruitment and retention of nucleating resources. Traffic 12, 1868–1878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Disanza, A., Frittoli, E., Palamidessi, A. & Scita, G. Endocytosis and spatial restriction of cell signaling. Mol. Oncol. 3, 280–296 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Balbis, A. & Posner, B. I. Compartmentalization of EGFR in cellular membranes: role of membrane rafts. J. Cell Biochem. 109, 1103–1108 (2010).

    CAS  PubMed  Google Scholar 

  33. Sigismund, S. et al. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev. Cell 15, 209–219 (2008). This study provides evidence that the mechanism of RTK endocytosis can profoundly affect RTK signalling, as clathrin-mediated endocytosis of EGFR promotes receptor recycling and clathrin-independent endocytosis promotes degradation.

    Article  CAS  PubMed  Google Scholar 

  34. Paratcha, G. et al. Released GFRα1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron 29, 171–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Bruckner, K. et al. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511–524 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Pasquale, E. B. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nature Rev. Cancer 10, 165–180 (2010).

    Article  CAS  Google Scholar 

  37. Gutierrez, J. & Brandan, E. A novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation. Mol. Cell Biol. 30, 1634–1649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nature Rev. Mol. Cell Biol. 9, 887–901 (2008).

    Article  CAS  Google Scholar 

  39. Mellman, I. & Nelson, W. J. Coordinated protein sorting, targeting and distribution in polarized cells. Nature Rev. Mol. Cell Biol. 9, 833–845 (2008).

    Article  CAS  Google Scholar 

  40. Ferguson, E. L. & Horvitz, H. R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics 110, 17–72 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Aroian, R. V., Koga, M., Mendel, J. E., Ohshima, Y. & Sternberg, P. W. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 348, 693–699 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Hoskins, R., Hajnal, A. F., Harp, S. A. & Kim, S. K. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development 122, 97–111 (1996).

    CAS  PubMed  Google Scholar 

  43. Simske, J. S., Kaech, S. M., Harp, S. A. & Kim, S. K. LET-23 receptor localization by the cell junction protein LIN-7 during C. elegans vulval induction. Cell 85, 195–204 (1996). References 42 and 43 provide the first evidence that the distinct membrane localization of an RTK is crucial for its activation, demonstrating that the C. elegans EGFR family member, LET-23, must be localized to the basolateral membrane to be activated by its ligand.

    Article  CAS  PubMed  Google Scholar 

  44. Vermeer, P. D. et al. Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 422, 322–326 (2003). This study provides direct demonstration of the physical segregation of ligand–receptor pairs by apical and basolateral domains to prevent receptor activation in differentiated mammalian epithelia.

    Article  CAS  PubMed  Google Scholar 

  45. Lampugnani, M. G. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, β-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol. 161, 793–804 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  46. Lampugnani, M. G., Orsenigo, F., Gagliani, M. C., Tacchetti, C. & Dejana, E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol. 174, 593–604 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Curto, M., Cole, B. K., Lallemand, D., Liu, C. H. & McClatchey, A. I. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J. Cell Biol. 177, 893–903 (2007). This study reveals that the NF2 tumour suppressor, merlin, can associate with EGFR and inhibit its internalization specifically in a cell–cell contact-dependent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferrara, N. Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. (Berl.) 77, 527–543 (1999).

    Article  CAS  Google Scholar 

  49. Abraham, S. et al. VE-Cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr. Biol. 19, 668–674 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Qian, X., Karpova, T., Sheppard, A. M., McNally, J. & Lowy, D. R. E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J. 23, 1739–1748 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Perrais, M., Chen, X., Perez-Moreno, M. & Gumbiner, B. M. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol. Biol. Cell 18, 2013–2025 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, J. H., Kushiro, K., Graham, N. A. & Asthagiri, A. R. Tunable interplay between epidermal growth factor and cell-cell contact governs the spatial dynamics of epithelial growth. Proc. Natl Acad. Sci. USA 106, 11149–11153 (2009). This study provides intriguing evidence that cells can modulate their sensitivity to EGF-activated signalling as a function of the amount of cell–cell contact with which they are engaged.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, J. H. & Asthagiri, A. R. Matrix stiffening sensitizes epithelial cells to EGF and enables the loss of contact inhibition of proliferation. J. Cell Sci. 124, 1280–1287 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Affolter, M., Zeller, R. & Caussinus, E. Tissue remodelling through branching morphogenesis. Nature Rev. Mol. Cell Biol. 10, 831–842 (2009).

    Article  CAS  Google Scholar 

  55. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Article  CAS  Google Scholar 

  56. Montell, D. J. Border-cell migration: the race is on. Nature Rev. Mol. Cell Biol. 4, 13–24 (2003).

    Article  CAS  Google Scholar 

  57. Jekely, G., Sung, H. H., Luque, C. M. & Rorth, P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev. Cell 9, 197–207 (2005). This study shows that spatial restriction of RTK signalling via endocytosis and receptor recycling to a distinct membrane region of migrating cells is necessary for directed cell migration.

    Article  CAS  PubMed  Google Scholar 

  58. Batlle, E. et al. β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Solanas, G., Cortina, C., Sevillano, M. & Batlle, E. Cleavage of E-cadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nature Cell Biol. 13, 1100–1107 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Pitulescu, M. E. & Adams, R. H. Eph/ephrin molecules--a hub for signaling and endocytosis. Genes Dev. 24, 2480–2492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shilo, B. Z. Regulating the dynamics of EGF receptor signaling in space and time. Development 132, 4017–4027 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Cheung, L. S., Schupbach, T. & Shvartsman, S. Y. Pattern formation by receptor tyrosine kinases: analysis of the Gurken gradient in Drosophila oogenesis. Curr. Opin. Genet. Dev. 21, 719–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eilken, H. M. & Adams, R. H. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr. Opin. Cell Biol. 22, 617–625 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Benedito, R. et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484, 110–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nilsson, I. et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J. 29, 1377–1388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Murphy, J. E., Padilla, B. E., Hasdemir, B., Cottrell, G. S. & Bunnett, N. W. Endosomes: a legitimate platform for the signaling train. Proc. Natl Acad. Sci. USA 106, 17615–17622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nature Rev. Mol. Cell Biol. 10, 609–622 (2009).

    Article  CAS  Google Scholar 

  69. Scita, G. & Di Fiore, P. P. The endocytic matrix. Nature 463, 464–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Di Guglielmo, G. M., Baass, P. C., Ou, W. J., Posner, B. I. & Bergeron, J. J. Compartmentalization of, S. H. C., GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J. 13, 4269–4277 (1994). The first biochemical evidence that RTK signalling continues from endosomes is reported, demonstrating a complex of activated EGFR, SHC, GRB2 and SOS in the endosomal membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baass, P. C., Di Guglielmo, G. M., Authier, F., Posner, B. I. & Bergeron, J. J. Compartmentalized signal transduction by receptor tyrosine kinases. Trends Cell Biol. 5, 465–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996). This study provides the first demonstration that clathrin-mediated endocytosis is required to achieve full EGFR tyrosine phosphorylation and activation of ERK1–2.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, Y., Moheban, D. B., Conway, B. R., Bhattacharyya, A. & Segal, R. A. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci. 20, 5671–5678 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, C., Lai, C. F. & Mobley, W. C. Nerve growth factor activates persistent Rap1 signaling in endosomes. J. Neurosci. 21, 5406–5416 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ceresa, B. P., Kao, A. W., Santeler, S. R. & Pessin, J. E. Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Mol. Cell Biol. 18, 3862–3870 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, Y., Pennock, S. D., Chen, X., Kazlauskas, A. & Wang, Z. Platelet-derived growth factor receptor-mediated signal transduction from endosomes. J. Biol. Chem. 279, 8038–8046 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465, 487–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Ehlers, M. D., Kaplan, D. R., Price, D. L. & Koliatsos, V. E. NGF-stimulated retrograde transport of trkA in the mammalian nervous system. J. Cell Biol. 130, 149–156 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Grimes, M. L. et al. Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J. Neurosci. 16, 7950–7964 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Watson, F. L. et al. Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nature Neurosci. 4, 981–988 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Junttila, T. T. et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15, 429–440 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Scaltriti, M. et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28, 803–814 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Garrett, J. T. et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc. Natl Acad. Sci. USA 108, 5021–5026 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ghosh, R. et al. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res. 71, 1871–1882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Turke, A. B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Couet, J., Sargiacomo, M. & Lisanti, M. P. Interaction of a receptor tyrosine kinase, EGF-R., with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem. 272, 30429–30438 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Engelman, J. A. et al. Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. J. Biol. Chem. 273, 20448–20455 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Engelman, J. A., Zhang, X. L. & Lisanti, M. P. Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett. 436, 403–410 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Goetz, J. G., Lajoie, P., Wiseman, S. M. & Nabi, I. R. Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev. 27, 715–735 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Hayashi, K. et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res. 61, 2361–2364 (2001).

    CAS  PubMed  Google Scholar 

  93. Shatz, M. & Liscovitch, M. Caveolin-1: a tumor-promoting role in human cancer. Int. J. Radiat. Biol. 84, 177–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, Y. et al. Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor-mediated upregulation of caveolin-1. Proc. Natl Acad. Sci. USA 109, 4892–4897 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cole, B. K., Curto, M., Chan, A. W. & McClatchey, A. I. Localization to the cortical cytoskeleton is necessary for Nf2/merlin-dependent epidermal growth factor receptor silencing. Mol. Cell Biol. 28, 1274–1284 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Martin-Belmonte, F. & Perez-Moreno, M. Epithelial cell polarity, stem cells and cancer. Nature Rev. Cancer 12, 23–38 (2012).

    Article  CAS  Google Scholar 

  98. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Gardiol, D., Zacchi, A., Petrera, F., Stanta, G. & Banks, L. Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int. J. Cancer 119, 1285–1290 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Nakagawa, S. et al. Analysis of the expression and localisation of a LAP protein, human scribble, in the normal and neoplastic epithelium of uterine cervix. Br. J. Cancer 90, 194–199 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Naylor, T. L. et al. High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res. 7, R1186–R1198 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, S. W. et al. Analysis of chromosomal changes in serous ovarian carcinoma using high-resolution array comparative genomic hybridization: Potential predictive markers of chemoresistant disease. Genes Chromosom. Cancer 46, 1–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Vaira, V. et al. Aberrant overexpression of the cell polarity module scribble in human cancer. Am. J. Pathol. 178, 2478–2483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vaccari, T. & Bilder, D. At the crossroads of polarity, proliferation and apoptosis: the use of Drosophila to unravel the multifaceted role of endocytosis in tumor suppression. Mol. Oncol. 3, 354–365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Reischauer, S., Levesque, M. P., Nusslein-Volhard, C. & Sonawane, M. Lgl2 executes its function as a tumor suppressor by regulating ErbB signaling in the zebrafish epidermis. PLoS Genet. 5, e1000720 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Schoeberl, B. et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res. 70, 2485–2494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sheng, Q. et al. An activated ErbB3/NRG1 autocrine loop supports in vivo proliferation in ovarian cancer cells. Cancer Cell 17, 298–310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wilson, T. R., Lee, D. Y., Berry, L., Shames, D. S. & Settleman, J. Neuregulin-1-mediated autocrine signaling underlies sensitivity to HER2 kinase inhibitors in a subset of human cancers. Cancer Cell 20, 158–172 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Mateus, A. R. et al. EGFR regulates RhoA-GTP dependent cell motility in E-cadherin mutant cells. Hum. Mol. Genet. 16, 1639–1647 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Bremm, A. et al. Enhanced activation of epidermal growth factor receptor caused by tumor-derived E-cadherin mutations. Cancer Res. 68, 707–714 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  112. Barr, S. et al. Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions. Clin. Exp. Metastasis 25, 685–693 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Feng, H. et al. Dynamin 2 mediates PDGFRα-SHP-2-promoted glioblastoma growth and invasion. Oncogene 26 Sep 2011 (doi:10.1038/onc.2011.436).

  114. Caswell, P. T. et al. Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell Biol. 183, 143–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Benjamin, J. M. & Nelson, W. J. Bench to bedside and back again: molecular mechanisms of α-catenin function and roles in tumorigenesis. Semin. Cancer Biol. 18, 53–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Lallemand, D., Curto, M., Saotome, I., Giovannini, M. & McClatchey, A. I. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev. 17, 1090–1100 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morris, Z. S. & McClatchey, A. I. Aberrant epithelial morphology and persistent epidermal growth factor receptor signaling in a mouse model of renal carcinoma. Proc. Natl Acad. Sci. USA 106, 9767–9772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Benhamouche, S. et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev. 24, 1718–1730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1805, 105–117 (2010).

    CAS  PubMed  Google Scholar 

  120. Cortina, C. et al. EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nature Genet. 39, 1376–1383 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Astin, J. W. et al. Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nature Cell Biol. 12, 1194–1204 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Mosesson, Y., Mills, G. B. & Yarden, Y. Derailed endocytosis: an emerging feature of cancer. Nature Rev. Cancer 8, 835–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Mostov, K., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nature Cell Biol. 5, 287–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Choudhary, C. et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol. Cell 36, 326–339 (2009). This study provides evidence that mutations may render RTKs oncogenic by allowing their premature activation in the biosynthetic pathway. Here, the FLT3-ITD mutation aberrantly activates STAT5 from its intracellular localization, but fails to activate PI3K and MAPK which require membrane-targeting of FLT3.

    Article  CAS  PubMed  Google Scholar 

  125. Joffre, C. et al. A direct role for Met endocytosis in tumorigenesis. Nature Cell Biol. 13, 827–837 (2011). The first direct link between RTK endocytosis and tumorigenicity in vivo is demonstrated using activated MET mutants that depend on increased endocytosis and recycling for their oncogenic properties.

    Article  CAS  PubMed  Google Scholar 

  126. Haber, D. A., Gray, N. S. & Baselga, J. The evolving war on cancer. Cell 145, 19–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Goldstein, N. I., Prewett, M., Zuklys, K., Rockwell, P. & Mendelsohn, J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res. 1, 1311–1318 (1995).

    CAS  PubMed  Google Scholar 

  128. Agus, D. B. et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2, 127–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Scaltriti, M. et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl Cancer Inst. 99, 628–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Rev. Cancer 4, 361–370 (2004).

    Article  CAS  Google Scholar 

  131. Alvarado, D., Klein, D. E. & Lemmon, M. A. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor. Nature 461, 287–291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jura, N. et al. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137, 1293–1307 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Jura, N., Shan, Y., Cao, X., Shaw, D. E. & Kuriyan, J. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc. Natl Acad. Sci. USA 106, 21608–21613 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hynes, N. E. & Lane, H. A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Rev. Cancer 5, 341–354 (2005).

    Article  CAS  Google Scholar 

  135. Baselga, J. & Swain, S. M. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nature Rev. Cancer 9, 463–475 (2009).

    Article  CAS  Google Scholar 

  136. Stetak, A. et al. Cell fate-specific regulation of EGF receptor trafficking during Caenorhabditis elegans vulval development. EMBO J. 25, 2347–2357 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Avraham, R. & Yarden, Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nature Rev. Mol. Cell Biol. 12, 104–117 (2011).

    Article  CAS  Google Scholar 

  138. Kleiman, L. B., Maiwald, T., Conzelmann, H., Lauffenburger, D. A. & Sorger, P. K. Rapid phospho-turnover by receptor tyrosine kinases impacts downstream signaling and drug binding. Mol. Cell 43, 723–737 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Valiathan, R. R., Marco, M., Leitinger, B., Kleer, C. G. & Fridman, R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev. 31, 295–321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Schlessinger, J. & Lemmon, M. A. Nuclear signaling by receptor tyrosine kinases: the first robin of spring. Cell 127, 45–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Carpenter, G. & Liao, H. J. Trafficking of receptor tyrosine kinases to the nucleus. Exp. Cell Res. 315, 1556–1566 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Wang, S. C. & Hung., M. C. Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin. Cancer Res. 15, 6484–6489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, Y. N., Yamaguchi, H., Hsu, J. M. & Hung., M. C. Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene 29, 3997–4006 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Marti, U. et al. Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology 13, 15–20 (1991).

    Article  CAS  PubMed  Google Scholar 

  145. Edwards, J. et al. The role of HER1-HER4 and EGFRvIII in hormone-refractory prostate cancer. Clin. Cancer Res. 12, 123–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Ge, H., Gong, X. & Tang, C. K. Evidence of high incidence of EGFRvIII expression and coexpression with EGFR in human invasive breast cancer by laser capture microdissection and immunohistochemical analysis. Int. J. Cancer 98, 357–361 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. de la Iglesia, N. et al. Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev. 22, 449–462 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Koumakpayi, I. H. et al. Expression and nuclear localization of ErbB3 in prostate cancer. Clin. Cancer Res. 12, 2730–2737 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Cheng, C. J. et al. Bone microenvironment and androgen status modulate subcellular localization of ErbB3 in prostate cancer cells. Mol. Cancer Res. 5, 675–684 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Massie, C. & Mills, I. G. The developing role of receptors and adaptors. Nature Rev. Cancer 6, 403–409 (2006).

    Article  CAS  Google Scholar 

  151. Ross, J. S. et al. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 14, 320–368 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Merlos-Suarez, A. & Batlle, E. Eph-ephrin signalling in adult tissues and cancer. Curr. Opin. Cell Biol. 20, 194–200 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Engelman for thoughtful comments on the manuscript, and members of the McClatchey laboratory for many creative discussions. This work was supported by US NIH R01 CA113733 to A.I.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea I. McClatchey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Andrea I. McClatchey's homepage

Glossary

Autocrine

A mode of signalling in which a secreted substance acts on surface receptors that are present on the same cell from which the substance was produced.

Cell cortex

The outer margin of a cell containing the plasma membrane and underlying cortical cytoskeleton (a contractile, mesh-like structure that is rich in contractile actin–myosin filaments and other cytoskeletal components). Can also be used to refer to the cortical cytoskeleton alone.

Clathrin

A major protein component of the vesicular coat of specialized pits and vesicles involved in receptor-mediated endocytosis.

Adherens junctions

Macromolecular complexes containing adhesive transmembrane receptors (cadherins and nectins) and cytoplasmic regulators (catenins) that link the complexes to the actin cytoskeleton. Adherens junctions undergo continuous remodelling and are necessary for cell–cell adhesion and the polarization of epithelial and endothelial cells.

Tight junctions

Cell–cell adhesion complexes that form a semi-permeable barrier between the apical and basolateral surfaces of epithelial cells and that contribute to cell polarity and signalling.

Apical–basal polarity

Epithelial cells are polarized, with an apical membrane that faces the external environment or a lumen and a spatially opposed basolateral membrane that functions in cell–cell interactions and contacts the basement membrane.

Paracrine

A mode of signalling in which a secreted substance acts on surface receptors present on other cells.

PDZ domain

A structural, protein–protein interaction domain of 80–90 amino acids in length that often serves as a scaffold for signalling complexes and/or as a cytoskeletal anchor for transmembrane proteins.

Crypt–villus axis

The longitudinal or vertical axis formed by a villus and its corresponding crypts in the small intestine.

Dynamin

A large GTPase that forms a helix around the neck of nascent endocytic vesicles to separate them from parent membranes.

Axon terminal

The distal termination of a presynaptic neuron.

Cell body

The part of a neuron containing the nucleus and surrounding cytoplasm, but not the axonal and dendritic extensions.

Epithelial-to-mesenchymal transition

(EMT). A programme by which cells convert from an epithelial to a mesenchymal phenotype. This process, which is enacted during normal embryonic development, can be abnormally activated in carcinomas, resulting in altered cell morphology, the expression of mesenchymal proteins and increased invasiveness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casaletto, J., McClatchey, A. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer 12, 387–400 (2012). https://doi.org/10.1038/nrc3277

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3277

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer