Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MYC: connecting selective transcriptional control to global RNA production

Key Points

  • MYC is a key integrator of growth-regulatory and oncogenic signalling pathways.

  • MYC binds open chromatin and functions as a transcriptional activator and repressor of selected gene subsets.

  • Detection of MYC binding to chromatin should not be systematically equated to a productive transcriptional event.

  • MYC regulates genes and pathways that can feed back on global RNA production.

  • Various MYC target gene products are crucial for tumour maintenance and may be targeted therapeutically: identifying these key effectors is a main priority in the field.

Abstract

Two opposing models have been proposed to describe the function of the MYC oncoprotein in shaping cellular transcriptomes: one posits that MYC amplifies transcription at all active loci; the other that MYC differentially controls discrete sets of genes, the products of which affect global transcript levels. Here, we argue that differential gene regulation by MYC is the sole unifying model that is consistent with all available data. Among other effects, MYC endows cells with physiological and metabolic changes that have the potential to feed back on global RNA production, processing and turnover. The field is progressing steadily towards a full characterization of the MYC-regulated genes and pathways that mediate these biological effects and — by the same token — endow MYC with its pervasive oncogenic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MYC is centrally positioned in cell growth- and cancer-regulatory networks.
Figure 4: Normalization of relative expression levels and correction to cell equivalents provide complementary information in gene expression profiles.
Figure 2: A schematic model for the stepwise recruitment of MYC–MAX on chromatin.
Figure 3: RNA amplification and chromatin invasion are separable phenomena.

Similar content being viewed by others

References

  1. Vennstrom, B., Sheiness, D., Zabielski, J. & Bishop, J. M. Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J. Virol. 42, 773–779 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hayward, W. S., Neel, B. G. & Astrin, S. M. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290, 475–480 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Marcu, K. B., Bossone, S. A. & Patel, A. J. myc function and regulation. Annu. Rev. Biochem. 61, 809–860 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Wierstra, I. & Alves, J. The c-myc promoter: still MysterY and challenge. Adv. Cancer Res. 99, 113–333 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Eilers, M. & Eisenman, R. N. Myc's broad reach. Genes Dev. 22, 2755–2766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tansey, W. P. Mammalian MYC proteins and cancer. New J. Sci. 2014, 757534 (2014).

    Article  CAS  Google Scholar 

  7. Gallant, P. Myc function in Drosophila. Cold Spring Harb. Perspect. Med. 3, a014324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grifoni, D. & Bellosta, P. Drosophila Myc: a master regulator of cellular performance. Biochim. Biophys. Acta 1849, 570–581 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Young, S. L. et al. Premetazoan ancestry of the Myc–Max network. Mol. Biol. Evol. 28, 2961–2971 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Gabay, M., Li, Y. & Felsher, D. W. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med. 4, a014241 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meyer, N. & Penn, L. Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vita, M. & Henriksson, M. The Myc oncoprotein as a therapeutic target for human cancer. Semin. Cancer Biol. 16, 318–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Arvanitis, C. & Felsher, D. W. Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin. Cancer Biol. 16, 313–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  PubMed  Google Scholar 

  17. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297, 102–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Pelengaris, S., Khan, M. & Evan, G. I. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109, 321–334 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sodir, N. M. et al. Endogenous Myc maintains the tumor microenvironment. Genes Dev. 25, 907–916 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blackwood, E. M. & Eisenman, R. N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sabò, A. et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 511, 488–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walz, S. et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 511, 483–487 (2014). References 23–26 provide contrasting views on the phenomenon of RNA amplification as a consequence of MYC activity, as thoroughly discussed in this Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeller, K. I. et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc. Natl Acad. Sci. USA 103, 17834–17839 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guccione, E. et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat. Cell Biol. 8, 764–770 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 151, 994–1004 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soufi, A. et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, C. H., Lin, C., Tanaka, H., Fero, M. L. & Eisenman, R. N. Gene regulation and epigenetic remodeling in murine embryonic stem cells by c-Myc. PLoS ONE 4, e7839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, B. K. et al. Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells. Genome Res. 22, 9–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sabò, A. & Amati, B. Genome recognition by MYC. Cold Spring Harb. Perspect. Med. 4, a014191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo, J. et al. Sequence specificity incompletely defines the genome-wide occupancy of Myc. Genome Biol. 15, 482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nair, S. K. & Burley, S. K. X-ray structures of Myc–Max and Mad–Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112, 193–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Sauve, S., Naud, J. F. & Lavigne, P. The mechanism of discrimination between cognate and non-specific DNA by dimeric b/HLH/LZ transcription factors. J. Mol. Biol. 365, 1163–1175 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Thomas, L. R. et al. Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol. Cell 58, 440–452 (2015). These authors identify the chromatin-associated protein WDR5 as a determinant of genome recognition by MYC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, C. H. et al. The chromodomain-containing histone acetyltransferase TIP60 acts as a code reader, recognizing the epigenetic codes for initiating transcription. Biosci. Biotechnol. Biochem. 79, 532–538 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Frank, S. R. et al. MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep. 4, 575–580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perna, D. et al. Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene 31, 1695–1709 (2012). This study identifies the MYC-dependent transcriptional programme in mitogen-stimulated mouse fibroblasts.

    Article  CAS  PubMed  Google Scholar 

  45. Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, J. et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 22, 1798–1812 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Herkert, B. & Eilers, M. Transcriptional repression: the dark side of myc. Genes Cancer 1, 580–586 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schneider, A., Peukert, K., Eilers, M. & Hanel, F. Association of Myc with the zinc-finger protein Miz-1 defines a novel pathway for gene regulation by Myc. Curr. Top. Microbiol. Immunol. 224, 137–146 (1997).

    CAS  PubMed  Google Scholar 

  49. Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat. Cell Biol. 3, 400–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat. Cell Biol. 3, 392–399 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Wiese, K. E. et al. Repression of SRF target genes is critical for Myc-dependent apoptosis of epithelial cells. EMBO J. 34, 1554–1571 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yap, C. S., Peterson, A. L., Castellani, G., Sedivy, J. M. & Neretti, N. Kinetic profiling of the c-Myc transcriptome and bioinformatic analysis of repressed gene promoters. Cell Cycle 10, 2184–2196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mao, D. Y. et al. Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr. Biol. 13, 882–886 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Waters, C. M., Littlewood, T. D., Hancock, D. C., Moore, J. P. & Evan, G. I. c-myc protein expression in untransformed fibroblasts. Oncogene 6, 797–805 (1991).

    CAS  PubMed  Google Scholar 

  56. Rudolph, C., Adam, G. & Simm, A. Determination of copy number of c-Myc protein per cell by quantitative Western blotting. Anal. Biochem. 269, 66–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Leone, G. et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell 8, 105–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Neri, F. et al. Myc regulates the transcription of the PRC2 gene to control the expression of developmental genes in embryonic stem cells. Mol. Cell. Biol. 32, 840–851 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chou, C. et al. c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat. Immunol. 15, 884–893 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smith, A. P. et al. A positive role for Myc in TGFβ-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene 28, 422–430 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Knoepfler, P. S. et al. Myc influences global chromatin structure. EMBO J. 25, 2723–2734 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jackstadt, R. & Hermeking, H. MicroRNAs as regulators and mediators of c-MYC function. Biochim. Biophys. Acta 1849, 544–553 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Kaur, M. & Cole, M. D. MYC acts via the PTEN tumor suppressor to elicit autoregulation and genome-wide gene repression by activation of the Ezh2 methyltransferase. Cancer Res. 73, 695–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Cheng, A. S. et al. Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-α responsive promoters. Mol. Cell 21, 393–404 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Ji, H. et al. Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation. PLoS ONE 6, e26057 (2011). These authors identify a cell-type-independent MYC signature, including genes involved in RNA processing, ribosome biogenesis and biomass accumulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dang, C. V. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb. Perspect. Med. 3, a014217 (2013). This is a comprehensive review of the effects of MYC on cell metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wolf, E., Lin, C. Y., Eilers, M. & Levens, D. L. Taming of the beast: shaping Myc-dependent amplification. Trends Cell Biol. 25, 241–248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cowling, V. H. & Cole, M. D. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol. Cell. Biol. 27, 2059–2073 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Levens, D. Cellular MYCro economics: balancing MYC function with MYC expression. Cold Spring Harb. Perspect. Med. 3, a014233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cunningham, J. T., Moreno, M. V., Lodi, A., Ronen, S. M. & Ruggero, D. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell 157, 1088–1103 (2014). This study provides an important example of a mechanism by which MYC can indirectly influence global RNA synthesis, in particular through the regulation of nucleotide biosynthetic processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Marguerat, S. & Bahler, J. Coordinating genome expression with cell size. Trends Genet. 28, 560–565 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. das Neves, R. P. et al. Connecting variability in global transcription rate to mitochondrial variability. PLoS Biol. 8, e1000560 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Padovan-Merhar, O. et al. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell 58, 339–352 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Darzynkiewicz, Z., Traganos, F. & Melamed, M. R. New cell cycle compartments identified by multiparameter flow cytometry. Cytometry 1, 98–108 (1980).

    Article  CAS  PubMed  Google Scholar 

  76. Chipumuro, E. et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hart, J. R., Roberts, T. C., Weinberg, M. S., Morris, K. V. & Vogt, P. K. MYC regulates the non-coding transcriptome. Oncotarget 5, 12543–12554 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kim, T. et al. MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression. Oncotarget 6, 18780–18789 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Loven, J. et al. Revisiting global gene expression analysis. Cell 151, 476–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tu, W. B. et al. Myc and its interactors take shape. Biochim. Biophys. Acta 1849, 469–483 (2015). This is a comprehensive overview of known MYC interactors, highlighting the complexity of their function in MYC biology.

    Article  CAS  PubMed  Google Scholar 

  81. Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat. Cell Biol. 7, 303–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat. Cell Biol. 7, 311–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kwak, H. & Lis, J. T. Control of transcriptional elongation. Annu. Rev. Genet. 47, 483–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eberhardy, S. R. & Farnham, P. J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Kanazawa, S., Soucek, L., Evan, G., Okamoto, T. & Peterlin, B. M. c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene 22, 5707–5711 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Bouchard, C., Marquardt, J., Bras, A., Medema, R. H. & Eilers, M. Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J. 23, 2830–2840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gargano, B., Amente, S., Majello, B. & Lania, L. P-TEFb is a crucial co-factor for Myc transactivation. Cell Cycle 6, 2031–2037 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet. 39, 1512–1516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015). This is a comprehensive review of the mechanisms regulating transcriptional elongation by Pol II.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Koch, H. B. et al. Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach. Cell Cycle 6, 205–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Y. et al. Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations. Nature 504, 306–310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25, 582–597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van Riggelen, J., Yetil, A. & Felsher, D. W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 10, 301–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Lodish, H. et al. Molecular Cell Biology 4th edn (W. H. Freeman, 2000).

    Google Scholar 

  98. Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat. Cell Biol. 7, 295–302 (2005). References 81, 82 and 98 show that MYC can stimulate rRNA transcription by Pol I.

    Article  CAS  PubMed  Google Scholar 

  99. Poortinga, G. et al. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J. 23, 3325–3335 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jones, R. M. et al. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol. Cell. Biol. 16, 4754–4764 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rosenwald, I. B., Rhoads, D. B., Callanan, L. D., Isselbacher, K. J. & Schmidt, E. V. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2α in response to growth induction by c-myc. Proc. Natl Acad. Sci. USA 90, 6175–6178 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Barna, M. et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456, 971–975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gandin, V. et al. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 455, 684–688 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fernandez-Sanchez, M. E., Gonatopoulos-Pournatzis, T., Preston, G., Lawlor, M. A. & Cowling, V. H. S-adenosyl homocysteine hydrolase is required for Myc-induced mRNA cap methylation, protein synthesis, and cell proliferation. Mol. Cell. Biol. 29, 6182–6191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cole, M. D. & Cowling, V. H. Specific regulation of mRNA cap methylation by the c-Myc and E2F1 transcription factors. Oncogene 28, 1169–1175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Koromilas, A. E., Lazaris-Karatzas, A. & Sonenberg, N. mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J. 11, 4153–4158 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, Y. C. et al. Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS ONE 3, e2722 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Miltenberger, R. J., Sukow, K. A. & Farnham, P. J. An E-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants. Mol. Cell. Biol. 15, 2527–2535 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nikiforov, M. A. et al. A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol. Cell. Biol. 22, 5793–5800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li, F. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 25, 6225–6234 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cai, L., Sutter, B. M., Li, B. & Tu, B. P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426–437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Morrish, F. et al. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J. Biol. Chem. 285, 36267–36274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lu, C. & Thompson, C. B. Metabolic regulation of epigenetics. Cell. Metab. 16, 9–17 (2012). This review highlights how the metabolic state of a cell can affect its epigenetic landscape.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Huang, C. H. et al. CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma. Genes Dev. 28, 1800–1814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fu, X. D. & Ares, M. Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Davis-Turak, J. C. et al. Considering the kinetics of mRNA synthesis in the analysis of the genome and epigenome reveals determinants of co-transcriptional splicing. Nucleic Acids Res. 43, 699–707 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Hubert, C. G. et al. Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A. Genes Dev. 27, 1032–1045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Koh, C. M. et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Hsu, T. Y.-T. et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature http://dx.doi.org/10.1038/nature14985 (2015). Reference 123 shows that MYC has a critical regulatory impact on the splicing machinery and, together with reference 124, that MYC-driven tumours are vulnerable to the suppression of spliceosome activity.

  125. Anczukow, O. et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat. Struct. Mol. Biol. 19, 220–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Das, S., Anczukow, O., Akerman, M. & Krainer, A. R. Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC. Cell Rep. 1, 110–117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. David, C. J., Chen, M., Assanah, M., Canoll, P. & Manley, J. L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Hirsch, C. L. et al. Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming. Genes Dev. 29, 803–816 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fujii, M. et al. SNIP1 is a candidate modifier of the transcriptional activity of c-Myc on E box-dependent target genes. Mol. Cell 24, 771–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Bracken, C. P. et al. Regulation of cyclin D1 RNA stability by SNIP1. Cancer Res. 68, 7621–7628 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rounbehler, R. J. et al. Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state. Cell 150, 563–574 (2012). This paper unravels a mechanism through which MYC can indirectly affect the stability of hundreds of mRNAs during lymphomagenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gruber, A. R., Fallmann, J., Kratochvill, F., Kovarik, P. & Hofacker, I. L. AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res. 39, D66–D69 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Mukherjee, N. et al. Global target mRNA specification and regulation by the RNA-binding protein ZFP36. Genome Biol. 15, R12 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Schweingruber, C., Rufener, S. C., Zund, D., Yamashita, A. & Muhlemann, O. Nonsense-mediated mRNA decay — mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim. Biophys. Acta 1829, 612–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, D., Wengrod, J. & Gardner, L. B. Overexpression of the c-myc oncogene inhibits nonsense-mediated RNA decay in B lymphocytes. J. Biol. Chem. 286, 40038–40043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Januszyk, K. & Lima, C. D. The eukaryotic RNA exosome. Curr. Opin. Struct. Biol. 24, 132–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Carroll, P. A. et al. Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis. Cancer Cell 27, 271–285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gartel, A. L. et al. Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc. Natl Acad. Sci. USA 98, 4510–4515 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Izumi, H. et al. Mechanism for the transcriptional repression by c-Myc on PDGF β-receptor. J. Cell Sci. 114, 1533–1544 (2001).

    CAS  PubMed  Google Scholar 

  141. Feng, X. H., Liang, Y. Y., Liang, M., Zhai, W. & Lin, X. Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-β-mediated induction of the CDK inhibitor p15Ink4B. Mol. Cell 9, 133–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Shrivastava, A. et al. Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc. Science 262, 1889–1892 (1993).

    Article  CAS  PubMed  Google Scholar 

  143. Brenner, C. et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24, 336–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Wolf, E. et al. Miz1 is required to maintain autophagic flux. Nat. Commun. 4, 2535 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Barrilleaux, B. L. et al. Miz-1 activates gene expression via a novel consensus DNA binding motif. PLoS ONE 9, e101151 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yang, W. et al. Repression of transcription of the p27 Kip1 cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 20, 1688–1702 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Herold, S. et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell 10, 509–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Warner, B. J., Blain, S. W., Seoane, J. & Massague, J. Myc downregulation by transforming growth factor β required for activation of the p15Ink4b G1 arrest pathway. Mol. Cell. Biol. 19, 5913–5922 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. van Riggelen, J. et al. The interaction between Myc and Miz1 is required to antagonize TGFβ-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev. 24, 1281–1294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gebhardt, A. et al. Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. J. Cell Biol. 172, 139–149 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Langdon, W. Y., Harris, A. W., Cory, S. & Adams, J. M. The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 47, 11–18 (1986).

    Article  CAS  PubMed  Google Scholar 

  153. Vaux, D. L., Adams, J. M., Alexander, W. S. & Pike, B. L. Immunologic competence of B cells subjected to constitutive c-myc oncogene expression in immunoglobulin heavy chain enhancer myc transgenic mice. J. Immunol. 139, 3854–3860 (1987).

    CAS  PubMed  Google Scholar 

  154. Leon, J., Ferrandiz, N., Acosta, J. C. & Delgado, M. D. Inhibition of cell differentiation: a critical mechanism for MYC-mediated carcinogenesis? Cell Cycle 8, 1148–1157 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Lawlor, E. R. et al. Reversible kinetic analysis of Myc targets in vivo provides novel insights into Myc-mediated tumorigenesis. Cancer Res. 66, 4591–4601 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18261–18266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sharma, V. M. et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol. Cell. Biol. 26, 8022–8031 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Weng, A. P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sansom, O. J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature 446, 676–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Berman, D. M. et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Sicklick, J. K. et al. Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 27, 748–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Kiuchi, N. et al. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J. Exp. Med. 189, 63–73 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen, C. R., Kang, Y., Siegel, P. M. & Massague, J. E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 110, 19–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Frederick, J. P., Liberati, N. T., Waddell, D. S., Shi, Y. & Wang, X. F. Transforming growth factor β-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol. Cell. Biol. 24, 2546–2559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Csibi, A. et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr. Biol. 24, 2274–2280 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wall, M. et al. Translational control of c-MYC by rapamycin promotes terminal myeloid differentiation. Blood 112, 2305–2317 (2008).

    Article  CAS  PubMed  Google Scholar 

  169. Notari, M. et al. A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood 107, 2507–2516 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kress, T. R. et al. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol. Cell 41, 445–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Sears, R., Leone, G., DeGregori, J. & Nevins, J. R. Ras enhances Myc protein stability. Mol. Cell 3, 169–179 (1999).

    Article  CAS  PubMed  Google Scholar 

  172. Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dai, M. S., Sears, R. & Lu, H. Feedback regulation of c-Myc by ribosomal protein L11. Cell Cycle 6, 2735–2741 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Kim, S., Li, Q., Dang, C. V. & Lee, L. A. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc. Natl Acad. Sci. USA 97, 11198–11202 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Perez-Roger, I., Kim, S. H., Griffiths, B., Sewing, A. & Land, H. Cyclins D1 and D2 mediate myc-induced proliferation via sequestration of p27Kip1 and p21Cip1. EMBO J. 18, 5310–5320 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yu, Q., Ciemerych, M. A. & Sicinski, P. Ras and Myc can drive oncogenic cell proliferation through individual D-cyclins. Oncogene 24, 7114–7119 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Beier, R. et al. Induction of cyclin E-cdk2 kinase activity, E2F-dependent transcription and cell growth by Myc are genetically separable events. EMBO J. 19, 5813–5823 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Perez-Roger, I., Solomon, D. L., Sewing, A. & Land, H. Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27Kip1 binding to newly formed complexes. Oncogene 14, 2373–2381 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. Mitchell, K. O. et al. Bax is a transcriptional target and mediator of c-myc-induced apoptosis. Cancer Res. 60, 6318–6325 (2000).

    CAS  PubMed  Google Scholar 

  180. Nikiforov, M. A. et al. Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition. Proc. Natl Acad. Sci. USA 104, 19488–19493 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA 101, 6164–6169 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hemann, M. T. et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436, 807–811 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Eischen, C. M., Woo, D., Roussel, M. F. & Cleveland, J. L. Apoptosis triggered by Myc-induced suppression of Bcl-XL or Bcl-2 is bypassed during lymphomagenesis. Mol. Cell. Biol. 21, 5063–5070 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Maclean, K. H., Keller, U. B., Rodriguez-Galindo, C., Nilsson, J. A. & Cleveland, J. L. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL . Mol. Cell. Biol. 23, 7256–7270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kim, J. W., Gao, P., Liu, Y. C., Semenza, G. L. & Dang, C. V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381–7393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl Acad. Sci. USA 94, 6658–6663 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA 105, 18782–18787 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762–765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang, H. et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Fogal, V. et al. Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction. Oncotarget 6, 1157–1170 (2015).

    Article  PubMed  Google Scholar 

  191. Zeller, K. I., Jegga, A. G., Aronow, B. J., O'Donnell, K. A. & Dang, C. V. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. 4, R69 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Valovka, T. et al. Transcriptional control of DNA replication licensing by Myc. Sci. Rep. 3, 3444 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Kwan, K. Y., Shen, J. & Corey, D. P. C-MYC transcriptionally amplifies SOX2 target genes to regulate self-renewal in multipotent otic progenitor cells. Stem Cell Rep. 4, 47–60 (2015).

    Article  CAS  Google Scholar 

  195. Tao, J. & Zhao, X. c-MYC–miRNA circuitry: a central regulator of aggressive B-cell malignancies. Cell Cycle 13, 191–198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chang, T. C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet. 40, 43–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Seitz, V. et al. Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS ONE 6, e26837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Campaner, E. Guccione, M. Morelli and G. Natoli for critical reading and comments. They apologize to colleagues whose work could not be cited owing to space constraints. Work in their laboratory is supported by grants from the European Community's Seventh Framework Programme (MODHEP consortium), the European Research Council, the Italian Health Ministry and the Italian Association for Cancer Research (AIRC) to B.A., and from Worldwide Cancer Research and the AIRC to A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Amati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

SV40 viral antigens

The simian virus 40 (SV40) genome encodes two viral antigens, large T and small t, both of which are capable of transforming mammalian cells.

Next-generation sequencing

(Also called high-throughput sequencing). Allows the parallel sequencing of millions of DNA molecules. This technology has facilitated the development of a series of techniques, such as the profiling of transcriptomes (RNA-sequencing) or of genome-wide protein–chromatin interactions (chromatin immunoprecipitation followed by sequencing).

Chromatin immunoprecipitation

(ChIP). A technique in which DNA-associated proteins such as transcription factors, chromatin remodellers or histones are chemically crosslinked to DNA and then immunoprecipitated. The co-purified DNA can then be analysed by PCR (ChIP–PCR), hybridization (ChIP–chip) or next-generation sequencing (ChIP–seq).

DNase I hypersensitive sites

Genomic regions that are particularly sensitive to DNase I-mediated cleavage. They are usually found in regions of open, less-packed chromatin and mark active or poised promoters and enhancers.

Pioneer transcription factor

A transcription factor that can access closed heterochromatic regions of the genome and make them accessible for downstream chromatin remodellers and other transcription factors. Pioneer transcription factors are often involved in building the chromatin landscape to shape cell-type-specific transcription.

Histone acetyltransferase

An enzyme that acetylates lysine residues in histone proteins and thereby has essential roles in proper gene activation and transcription.

Tethering factors

Transcription factors or chromatin-associated proteins that recruit other proteins to target regions on DNA; tethering factors are not necessarily directly DNA-bound.

RNA polymerase II carboxy-terminal domain

(Pol II CTD). Contains a series of heptad repeats (YSPTSPS or small variants, repeated 52 times in mammals) that are phosphorylated during the life cycle of Pol II-mediated transcription (initiation, pause release, elongation and termination) and regulate the various activities of Pol II.

MYC–ER

The MYC–ER fusion protein is a chimaera between the coding sequence of the human or mouse MYC mRNA and the hormone-binding domain of the oestrogen receptor (ER). A specific mutation in the ER domain makes MYC–ER activatable by synthetic 4-hydroxytamoxifen (4-OHT) but renders it insensitive to oestrogen.

4sU-labelling

4-thiouridine (4sU) is incorporated into actively transcribed RNA in live cells and can thus be used to study transcriptional regulation in vivo. RNA is extracted, and the labelled RNA is purified and subjected to genome-wide sequencing (4sU-seq).

GRO–seq

The genome-wide nuclear run-on (GRO) assay coupled with next-generation sequencing (–seq) is used to study elongation-competent RNA polymerase II on isolated nuclei by labelling and purifying short, nascent RNA fragments.

Nearest-neighbour associations

Promoters and enhancers form a complex interaction network that remains to be fully described in different physiological and cellular settings. If three-dimensional chromatin interaction maps are not available, nearest-neighbour associations link a given enhancer to its closest promoter, and vice versa.

mRNA cap methylation

The 5′ cap of an mRNA consists of a guanine nucleotide that can be methylated by the enzyme RNA guanine-7 methyltransferase (RNMT). The 7-methylguanosine cap promotes several post-transcriptional events and is required for effective mRNA translation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kress, T., Sabò, A. & Amati, B. MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15, 593–607 (2015). https://doi.org/10.1038/nrc3984

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3984

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer