Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inherited calcium channelopathies in the pathophysiology of arrhythmias

Abstract

Regulation of calcium flux in the heart is a key process that affects cardiac excitability and contractility. Degenerative diseases, such as coronary artery disease, have long been recognized to alter the physiology of intracellular calcium regulation, leading to contractile dysfunction or arrhythmias. Since the discovery of the first gene mutation associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) in 2001, a new area of interest in this field has emerged—the genetic abnormalities of key components of the calcium regulatory system. Such anomalies cause a variety of genetic diseases characterized by the development of life-threatening arrhythmias in young individuals. In this Review, we provide an overview of the structural organization and the function of calcium-handling proteins and describe the mechanisms by which mutations determine the clinical phenotype. Firstly, we discuss mutations in the genes encoding the ryanodine receptor 2 (RYR2) and calsequestrin 2 (CASQ2). These proteins are pivotal to the regulation of calcium release from the sarcoplasmic reticulum, and mutations can cause CPVT. Secondly, we review defects in genes encoding proteins that form the voltage-dependent L-type calcium channel, which regulates calcium entry into myocytes. Mutations in these genes cause various phenotypes, including Timothy syndrome, Brugada syndrome, and early repolarization syndrome. The identification of mutations associated with 'calcium-handling diseases' has led to an improved understanding of the role of calcium in cardiac physiology.

Key Points

  • Ca2+ transport in myocardial cells is a key process of cardiac excitability

  • A variety of clinical phenotypes can be caused by genetic mutations in genes controlling calcium handling

  • Mutations can affect both the 'intracellular' (sarcoplasmic reticulum calcium release) and the 'transmembrane' (Ca2+ influx through voltage-dependent L-type calcium channels) components of calcium handling

  • Inherited arrhythmias associated with Ca2+ dysfunction are often severe and life-threatening conditions

  • Risk stratification and therapy for patients with calcium channelopathies can save lives, but several knowledge gaps and uncertainties remain

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calcium-induced calcium release.
Figure 2: Spontaneous diastolic Ca2+ release and triggered arrhythmias.
Figure 3: Structure and mutational clusters of RyR2.
Figure 4: Episode of bidirectional ventricular tachycardia during an exercise stress test in a patient with catecholaminergic polymorphic ventricular tachycardia.
Figure 5: The L-type Ca2+ channel is formed by the assembly of three subunits: α1c, β2, and α2δ.

Cosmocyte/Ben Smith.

Figure 6: Clinical manifestations of Timothy syndrome.

Similar content being viewed by others

References

  1. Bers, D. M. Cardiac excitation–contraction coupling. Nature 415, 198–205 (2002).

    CAS  PubMed  Google Scholar 

  2. Burashnikov, E. et al. Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm 7, 1872–1882 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. Priori, S. G. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196–200 (2001).

    CAS  PubMed  Google Scholar 

  4. Lahat, H. et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am. J. Hum. Genet. 69, 1378–1384 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hasenfuss, G. & Pieske, B. Calcium cycling in congestive heart failure. J. Mol. Cell. Cardiol. 34, 951–969 (2002).

    CAS  PubMed  Google Scholar 

  6. George, C. H. Sarcoplasmic reticulum Ca2+ leak in heart failure: mere observation or functional relevance? Cardiovasc. Res. 77, 302–314 (2008).

    CAS  PubMed  Google Scholar 

  7. Pogwizd, S. M. & Bers, D. M. Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc. Med. 14, 61–66 (2004).

    CAS  PubMed  Google Scholar 

  8. Terentyev, D., Viatchenko-Karpinski, S., Valdivia, H. H., Escobar, A. L. & Györke, S. Luminal Ca2+ controls termination and refractory behavior of Ca2+-induced Ca2+ release in cardiac myocytes. Circ. Res. 91, 414–420 (2002).

    CAS  PubMed  Google Scholar 

  9. Bassani J. W., Bassani, R. A. & Bers, D. M. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J. Physiol. 476, 279–293 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pieske, B., Maier, L. S., Bers, D. M. & Hassenfuss, G. Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circ. Res. 85, 38–46 (1999).

    CAS  PubMed  Google Scholar 

  11. Cheng, H., Lederer, W. J. & Cannell, M. B. Calcium sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262, 740–744 (1993).

    CAS  PubMed  Google Scholar 

  12. Franzini-Armstrong, C., Protasi, F. & Tijskens, P. The assembly of calcium release units in cardiac muscle. Ann. NY Acad. Sci. 1047, 76–85 (2005).

    CAS  PubMed  Google Scholar 

  13. Cannell, M. B., Cheng, H. & Lederer, W. J. The control of calcium release in heart muscle. Science 268, 1045–1049 (1995).

    CAS  PubMed  Google Scholar 

  14. Satoh, H., Blatter, L. A. & Bers, D. M. Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 272, H657–H668 (1997).

    CAS  Google Scholar 

  15. Denegri, M. et al. Viral gene transfer rescues arrhythmogenic phenotype and ultrastructural abnormalities in adult calsequestrin-null mice with inherited arrhythmias. Circ. Res. 110, 663–668 (2012).

    CAS  PubMed  Google Scholar 

  16. Ginsburg, K. S. & Bers, D. M. Modulation of excitation–contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca2+ load and Ca2+ current trigger. J. Physiol. 556, 463–480 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hussain, M. & Orchard, C. H. Sarcoplasmic reticulum Ca2+ content, L-type Ca2+ current and the Ca2+ transient in rat myocytes during beta-adrenergic stimulation. J. Physiol. 505, 385–402 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Grimm, M. & Brown, J. H. Beta-adrenergic receptor signaling in the heart: role of CaMKII. J. Mol. Cell. Cardiol. 48, 322–330 (2010).

    CAS  PubMed  Google Scholar 

  19. Reiken, S. et al. Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J. Biol. Chem. 278, 444–453 (2003).

    CAS  PubMed  Google Scholar 

  20. Wehrens, X. H., Lehnart, S. E., Reiken, S. R. & Marks, A. R. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ. Res. 94, e61–e70 (2004).

    CAS  PubMed  Google Scholar 

  21. MacDonnell, S. M. et al. Adrenergic regulation of cardiac contractility does not involve phosphorylation of the cardiac ryanodine receptor at serine 2808. Circ. Res. 102, e65–e72 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    CAS  PubMed  Google Scholar 

  23. Ai, X., Curran, J. W., Shannon, T. R., Bers, D. M. & Pogwizd S. M. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ. Res. 97, 1314–1322 (2005).

    CAS  PubMed  Google Scholar 

  24. Bers, D. M. Ryanodine receptor S2808 phosphorylation in heart failure: smoking gun or red herring. Circ. Res. 110, 796–799 (2012).

    CAS  PubMed  Google Scholar 

  25. Maier, L. S. & Bers, D. M. Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation–contraction coupling in the heart. Cardiovasc. Res. 73, 631–640 (2007).

    CAS  PubMed  Google Scholar 

  26. Priori, S. G. et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 106, 69–74 (2002).

    CAS  PubMed  Google Scholar 

  27. Laitinen, P. J. et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 103, 485–490 (2001).

    CAS  PubMed  Google Scholar 

  28. Bhuiyan, Z. A. et al. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation 116, 1569–1576 (2007).

    PubMed  Google Scholar 

  29. Tang, Y., Tian, X., Wang, R., Fill, M. & Chen, S. R. Abnormal termination of Ca2+ release is a common defect of RyR2 mutations associated with cardiomyopathies. Circ. Res. 110, 968–977 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tiso, N. et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum. Mol. Genet. 10, 189–194 (2001).

    CAS  PubMed  Google Scholar 

  31. Venetucci, L. A., Trafford, A. W., O'Neill, S. C. & Eisner, D. A. The sarcoplasmic reticulum and arrhythmogenic calcium release. Cardiovasc. Res. 77, 285–292 (2008).

    CAS  PubMed  Google Scholar 

  32. Cheng, H., Lederer, M. R., Lederer, W. J. & Cannell, M. B. Calcium sparks and [Ca2+]i waves in cardiac myocytes. Am. J. Physiol. 270, C148–C159 (1996).

    CAS  PubMed  Google Scholar 

  33. Lukyanenko, V., Subramanian, S., Györke, I., Wiesner, T. F. & Györke, S. The role of luminal Ca2+ in the generation of Ca2+ waves in rat ventricular myocytes. J. Physiol. 518, 173–186 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Venetucci, L. A., Trafford, A. W. & Eisner, D. A. Increasing ryanodine receptor open probability alone does not produce arrhythmogenic calcium waves: threshold sarcoplasmic reticulum calcium content is required. Circ. Res. 100, 105–111 (2007).

    CAS  PubMed  Google Scholar 

  35. Trafford, A. W., Sibbring, G. C., Díaz, M. E. & Eisner, D. A. The effects of low concentrations of caffeine on spontaneous Ca release in isolated rat ventricular myocytes. Cell Calcium 28, 269–276 (2000).

    CAS  PubMed  Google Scholar 

  36. Overend, C. L., Eisner, D. A. & O'Neill, S. C. The effect of tetracaine on spontaneous Ca2+ release and sarcoplasmic reticulum calcium content in rat ventricular myocytes. J. Physiol. 502, 471–479 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lederer, W. J. & Tsien, R. W. Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibers. J. Physiol. 263, 73–100 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang, D. et al. Enhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death. Circ. Res. 97, 1173–1181 (2005).

    CAS  PubMed  Google Scholar 

  39. Jiang, D. et al. RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release (SOICR). Proc. Natl Acad. Sci. USA 101, 13062–13067 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Terentyev, D. et al. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death. Circ. Res. 98, 1151–1158 (2006).

    CAS  PubMed  Google Scholar 

  41. Liu, N. et al. Arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia: insights from a RyR2 R4496C knock-in mouse model. Circ. Res. 99, 292–298 (2006).

    CAS  PubMed  Google Scholar 

  42. George, C. H., Jundi, H., Thomas, N. L., Fry, D. L. & Lai, F. A. Ryanodine receptors and ventricular arrhythmias: emerging trends in mutations, mechanisms and therapies. J. Mol. Cell. Cardiol. 42, 34–50 (2007).

    CAS  PubMed  Google Scholar 

  43. Medeiros-Domingo, A. et al. The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J. Am. Coll. Cardiol. 54, 2065–2074 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rousseau, E., Smith, J. S., Henderson, J. S. & Meissner, G. Single channel and 45Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel. Biophys. J. 50, 1009–1014 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sitsapesan, R. & Williams, A. J. Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca2+-release channel by luminal Ca2+. J. Membr. Biol. 137, 215–226 (1994).

    CAS  PubMed  Google Scholar 

  46. Stern, M. D. & Cheng, H. Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle? Cell Calcium 35, 591–601 (2004).

    CAS  PubMed  Google Scholar 

  47. IRCCS Fondazione Salvatore Maugeri, Italy and New York University, USA. The gene connection for the heart. Genetic mutations and inherited arrhythmias [online], (2010).

  48. Jones, P. P. et al. Endoplasmic reticulum Ca2+ measurements reveal that the cardiac ryanodine receptor mutations linked to cardiac arrhythmia and sudden death alter the threshold for store-overload-induced Ca2+ release. Biochem. J. 412, 171–178 (2008).

    CAS  PubMed  Google Scholar 

  49. Lehnart, S. E. et al. Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation 109, 3208–3214 (2004).

    CAS  PubMed  Google Scholar 

  50. Wehrens, X. H. et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113, 829–840 (2003).

    CAS  PubMed  Google Scholar 

  51. George, C. H., Higgs, G. V. & Lai, F. A. Ryanodine receptor mutations associated with stress-induced ventricular tachycardia mediate increased calcium release in stimulated cardiomyocytes. Circ. Res. 93, 531–540 (2003).

    CAS  PubMed  Google Scholar 

  52. Guo, T. et al. Kinetics of FKBP12.6 binding to ryanodine receptors in permeabilized cardiac myocytes and effects on Ca sparks. Circ. Res. 106, 1743–1752 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kashimura, T. et al. In the RyR2(R4496C) mouse model of CPVT, β-adrenergic stimulation induces Ca waves by increasing SR Ca content and not by decreasing the threshold for Ca waves. Circ. Res. 107, 1483–1489 (2010).

    CAS  PubMed  Google Scholar 

  54. Yamamoto, T. et al. Identification of target domains of the cardiac ryanodine receptor to correct channel disorder in failing hearts. Circulation 117, 762–772 (2008).

    CAS  PubMed  Google Scholar 

  55. Uchinoumi, H. et al. Catecholaminergic polymorphic ventricular tachycardia is caused by mutation-linked defective conformational regulation of the ryanodine receptor. Circ. Res. 106, 1413–1424 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Suetomi, T. et al. Mutation-linked defective interdomain interactions within ryanodine receptor cause aberrant Ca2+ release leading to catecholaminergic polymorphic ventricular tachycardia. Circulation 124, 682–694 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang, D., Chen, W., Wang, R., Zhang, L. & Chen, S. R. Loss of luminal Ca2+ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death. Proc. Natl Acad. Sci. USA 104, 18309–18314 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Györke, S. & Terentyev, D. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc. Res. 77, 245–255 (2008).

    PubMed  Google Scholar 

  59. Wang, S. et al. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat. Struct. Biol. 5, 476–483 (1998).

    CAS  PubMed  Google Scholar 

  60. Mitchell, R. D., Simmerman, H. K. & Jones, L. R. Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J. Biol. Chem. 263, 1376–1381 (1988).

    CAS  PubMed  Google Scholar 

  61. Györke, I., Hester, N., Jones, L. R. & Györke, S. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys. J. 86, 2121–2128 (2004).

    PubMed  PubMed Central  Google Scholar 

  62. Xu, L. & Meissner, G. Regulation of cardiac muscle Ca2+ release channel by sarcoplasmic reticulum lumenal Ca2+. Biophys. J. 75, 2302–2312 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Knollmann, B. C. et al. Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. J. Clin. Invest. 116, 2510–2520 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Qin, J. et al. Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. J. Gen. Physiol. 131, 325–334 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. di Barletta, M. R. et al. Clinical phenotype and functional characterization of CASQ2 mutations associated with catecholaminergic polymorphic ventricular tachycardia. Circulation 114, 1012–1019 (2006).

    CAS  PubMed  Google Scholar 

  66. de la Fuente, S., Van Langen, I. M., Postma, A. V., Bikker, H. & Meijer, A. A case of catecholaminergic polymorphic ventricular tachycardia caused by two calsequestrin 2 mutations. Pacing Clin. Electrophysiol. 31, 916–919 (2008).

    PubMed  Google Scholar 

  67. Rizzi, N. et al. Unexpected structural and functional consequences of the R33Q homozygous mutation in cardiac calsequestrin: a complex arrhythmogenic cascade in a knock-in mouse model. Circ. Res. 103, 298–306 (2008).

    CAS  PubMed  Google Scholar 

  68. Song, L. et al. Calsequestrin 2 (CASQ2) mutations increase expression of calreticulin and ryanodine receptors, causing catecholaminergic polymorphic ventricular tachycardia. J. Clin. Invest. 117, 1814–1823 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kalyanasundaram, A., Bal, N. C., Franzini-Armstrong, C., Knollmann, B. C. & Periasamy, M. The calsequestrin mutation CASQ2D307H does not affect protein stability and targeting to the junctional sarcoplasmic reticulum but compromises its dynamic regulation of calcium buffering. J. Biol. Chem. 285, 3076–3083 (2010).

    CAS  PubMed  Google Scholar 

  70. Bal, N. C. et al. The catecholaminergic polymorphic ventricular tachycardia mutation R33Q disrupts the N-terminal structural motif that regulates reversible calsequestrin polymerization. J. Biol. Chem. 285, 17188–17196 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Valle, G. et al. Catecholaminergic polymorphic ventricular tachycardia-related mutations R33Q and L167H alter calcium sensitivity of human cardiac calsequestrin. Biochem. J. 413, 291–303 (2008).

    CAS  PubMed  Google Scholar 

  72. Houle, T. D., Ram, M. L. & Cala, S. E. Calsequestrin mutant D307H exhibits depressed binding to its protein targets and a depressed response to calcium. Cardiovasc. Res. 64, 227–233 (2004).

    CAS  PubMed  Google Scholar 

  73. Eisner, D. A., Trafford, A. W., Díaz, M. E., Overend, C. L. & O'Neill, S. C. The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovasc. Res. 38, 589–604 (1998).

    CAS  PubMed  Google Scholar 

  74. Liu, N. et al. Calmodulin kinase II inhibition prevents arrhythmias in RyR2(R4496C±) mice with catecholaminergic polymorphic ventricular tachycardia. J. Mol. Cell. Cardiol. 50, 214–222 (2011).

    CAS  PubMed  Google Scholar 

  75. Curran, J., Brown, K. H., Santiago, D. J., Pogwizd, S., Bers, D. M. & Shannon, T. R. Spontaneous Ca waves in ventricular myocytes from failing hearts depend on Ca2+-calmodulin-dependent protein kinase II. J. Mol. Cell. Cardiol. 49, 25–32 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Leenhardt, A. et al. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 91, 1512–1519 (1995).

    CAS  PubMed  Google Scholar 

  77. Postma, A. V. et al. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J. Med. Genet. 42, 863–870 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Marjamaa, A. et al. Intravenous epinephrine infusion test in diagnosis of catecholaminergic polymorphic ventricular tachycardia. J. Cardiovasc. Electrophysiol. 23, 194–199 (2011).

    PubMed  Google Scholar 

  79. Landzberg, S., Parker, J. D., Gauthier, D. F. & Colucci, W. S. Effects of intracoronary acetylcholine and atropine on basal and dobutamine-stimulated left ventricular contractility. Circulation 89, 164–168 (1994).

    CAS  PubMed  Google Scholar 

  80. Mohamed, U., Gollob, M. H., Gow, R. M. & Krahn, A. D. Sudden cardiac death despite an implantable cardioverter-defibrillator in a young female with catecholaminergic ventricular tachycardia. Heart Rhythm 3, 1486–1489 (2006).

    PubMed  Google Scholar 

  81. Odero, A., Bozzani, A., De Ferrari, G. M. & Schwartz, P. J. Left cardiac sympathetic denervation for the prevention of life-threatening arrhythmias: the surgical supraclavicular approach to cervicothoracic sympathectomy. Heart Rhythm 7, 1161–1165 (2010).

    PubMed  Google Scholar 

  82. Collura, C. A., Johnson, J. N., Moir, C. & Ackerman, M. J. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart Rhythm 6, 752–759 (2009).

    PubMed  Google Scholar 

  83. Wilde, A. A. et al. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N. Engl. J. Med. 358, 2024–2029 (2008).

    CAS  PubMed  Google Scholar 

  84. Watanabe, H. et al. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat. Med. 15, 380–383 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. van der Werf, C. et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J. Am. Coll. Cardiol. 57, 2244–2254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hilliard, F. A. et al. Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass. J. Mol. Cell. Cardiol. 48, 293–301 (2010).

    CAS  PubMed  Google Scholar 

  87. Conard, G. J. & Ober, R. E. Metabolism of flecainide. Am. J. Cardiol. 53, 41B–51B (1984).

    CAS  PubMed  Google Scholar 

  88. Liu, H., Atkins, J. & Kass, R. S. Common molecular determinants of flecainide and lidocaine block of heart Na+ channels: evidence from experiments with neutral and quaternary flecainide analogs. J. Gen. Physiol. 121, 199–214 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu, N. et al. Short communication: flecainide exerts an antiarrhythmic effect in a mouse model of catecholaminergic polymorphic ventricular tachycardia by increasing the threshold for triggered activity. Circ. Res. 109, 291–295 (2011).

    CAS  PubMed  Google Scholar 

  90. Lehnart, S. E. et al. Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation 109, 3208–3214 (2004).

    CAS  PubMed  Google Scholar 

  91. Loughrey, C. M. et al. K201 modulates excitation–contraction coupling and spontaneous Ca2+ release in normal adult rabbit ventricular cardiomyocytes. Cardiovasc. Res. 76, 236–246 (2007).

    CAS  PubMed  Google Scholar 

  92. Sedej, S. et al. Na+-dependent SR Ca2+ overload induces arrhythmogenic events in mouse cardiomyocytes with a human CPVT mutation. Cardiovasc. Res. 87, 50–59 (2010).

    CAS  PubMed  Google Scholar 

  93. Napolitano, C. & Antzelevitch, C. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel. Circ. Res. 108, 607–618 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yuan, W., Ginsburg, K. S. & Bers, D. M. Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes. J. Physiol. 493, 733–746 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bers, D. M. & Perez-Reyes, E. Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovasc. Res. 42, 339–360 (1999).

    CAS  PubMed  Google Scholar 

  96. Zhang, Z. et al. Functional roles of Cav1.3(α1D) calcium channels in sinoatrial nodes: insights gained from gene-targeted null mutant mice. Circ. Res. 90, 981–987 (2002).

    CAS  PubMed  Google Scholar 

  97. Mikami, A. et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340, 230–233 (1989).

    CAS  PubMed  Google Scholar 

  98. Hulme, J. T., Yarov-Yarovoy, V., Lin, T. W., Scheuer, T. & Catterall, W. A. Autoinhibitory control of the CaV1.2 channel by its proteolytically processed distal C-terminal domain. J. Physiol. 576, 87–102 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fu, Y. et al. Deletion of the distal C terminus of CaV1.2 channels leads to loss of beta-adrenergic regulation and heart failure in vivo. J. Biol. Chem. 286, 12617–12626 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Catterall, W. A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3, a003947 (2011).

    PubMed  PubMed Central  Google Scholar 

  101. Davies, A. et al. The α2δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a post-translational modification essential for function. Proc. Natl Acad. Sci. USA 107, 1654–1659 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Fuller-Bicer, G. A. et al. Targeted disruption of the voltage-dependent calcium channel α2/δ-1-subunit. Am. J. Physiol. Heart Circ. Physiol. 297, H117–H124 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Colecraft, H. M. et al. Novel functional properties of Ca2+ channel beta subunits revealed by their expression in adult rat heart cells. J. Physiol. 541, 435–452 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Buraei, Z. & Yang, J. The β subunit of voltage-gated Ca2+ channels. Physiol. Rev. 90, 1461–1506 (2010).

    CAS  PubMed  Google Scholar 

  105. Ruan, Y., Liu, N. & Priori, S. G. Sodium channel mutations and arrhythmias. Nat. Rev. Cardiol. 6, 337–348 (2009).

    CAS  PubMed  Google Scholar 

  106. Bezzina, C. et al. A single Na+ channel mutation causing both long-QT and Brugada syndromes. Circ. Res. 85, 1206–1213 (1999).

    CAS  PubMed  Google Scholar 

  107. Antzelevitch, C. et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115, 442–449 (2007).

    PubMed  PubMed Central  Google Scholar 

  108. Cordeiro, J. M. et al. Accelerated inactivation of the L-type calcium current due to a mutation in CACNB2b underlies Brugada syndrome. J. Mol. Cell. Cardiol. 46, 695–703 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Templin, C. et al. Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur. Heart J. 32, 1077–1088 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gollob, M. H. et al. Recommendations for the use of genetic testing in the clinical evaluation of inherited cardiac arrhythmias associated with sudden cardiac death: Canadian Cardiovascular Society/Canadian Heart Rhythm Society joint position paper. Can. J. Cardiol. 27, 232–245 (2011).

    PubMed  Google Scholar 

  111. Brugada, P. & Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol. 20, 1391–1396 (1992).

    CAS  PubMed  Google Scholar 

  112. Antzelevitch, C. et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111, 659–670 (2005).

    PubMed  Google Scholar 

  113. Wilde, A. A. et al. The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. J. Mol. Cell. Cardiol. 49, 543–553 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yan, G. X. & Antzelevitch, C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation 100, 1660–1666 (1999).

    CAS  PubMed  Google Scholar 

  115. Meregalli, P. G., Wilde, A. A. & Tan, H. L. Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more? Cardiovasc. Res. 67, 367–378 (2005).

    CAS  PubMed  Google Scholar 

  116. Priori, S. G. et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation 105, 1342–1347 (2002).

    PubMed  Google Scholar 

  117. Priori, S. G. et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed ELectrical stimUlation preDictive valuE) registry. J. Am. Coll. Cardiol. 59, 37–45 (2012).

    PubMed  Google Scholar 

  118. Probst, V. et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry. Circulation 121, 635–643 (2010).

    CAS  PubMed  Google Scholar 

  119. Gehi, A. K., Duong, T. D., Metz, L. D., Gomes, J. A. & Mehta, D. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J. Cardiovasc. Electrophysiol. 17, 577–583 (2006).

    PubMed  Google Scholar 

  120. Ohgo, T. et al. Acute and chronic management in patients with Brugada syndrome associated with electrical storm of ventricular fibrillation. Heart Rhythm 4, 695–700 (2007).

    PubMed  Google Scholar 

  121. Belthassen, B., Glick, A. & Viskin, S. Efficacy of quinidine in high-risk patients with Brugada syndrome. Circulation 110, 1731–1737 (2004).

    Google Scholar 

  122. Antzelevitch, C. & Fish, J. M. Therapy for the Brugada syndrome. Handb. Exp. Pharmacol. 171, 305–330 (2006).

    CAS  Google Scholar 

  123. Bjerregaard, P., Nallapaneni, H. & Gussak, I. Short QT interval in clinical practice. J. Electrocardiol. 43, 390–395 (2010).

    PubMed  Google Scholar 

  124. Viskin, S. The QT interval: too long, too short or just right. Heart Rhythm 6, 711–715 (2009).

    PubMed  Google Scholar 

  125. Gollob, M. H., Redpath, C. J. & Roberts, J. D. The short QT syndrome: proposed diagnostic criteria. J. Am. Coll. Cardiol. 57, 802–812 (2011).

    PubMed  Google Scholar 

  126. Brugada, R. et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109, 30–35 (2004).

    CAS  PubMed  Google Scholar 

  127. Bellocq, C. et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109, 2394–2397 (2004).

    PubMed  Google Scholar 

  128. Priori, S. G. et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ. Res. 96, 800–807 (2005).

    CAS  PubMed  Google Scholar 

  129. Patel, C., Yan, G. X. & Antzelevitch, C. Short QT syndrome: from bench to bedside. Circ. Arrhythm. Electrophysiol. 3, 401–408 (2010).

    PubMed  PubMed Central  Google Scholar 

  130. Gaita, F. et al. Short QT syndrome: pharmacologic treatment. J. Am. Coll. Cardiol. 43, 1494–1499 (2004).

    CAS  PubMed  Google Scholar 

  131. Giustetto, C. et al. Long term follow-up of patients with short QT syndrome. J. Am. Coll. Cardiol. 58, 587–595 (2011).

    PubMed  Google Scholar 

  132. Iost, N., Viràg, L., Varrò, A. & Papp, J. G. Comparison of the effect of class IA antiarrhythmic drugs on transmembrane potassium currents in rabbit ventricular myocytes. J. Cardiovasc. Pharmacol. Ther. 8, 31–41 (2003).

    CAS  PubMed  Google Scholar 

  133. Boineau, J. P. The early repolarization variant—normal or a marker of heart disease in certain subjects. J. Electrocardiol. 40, 3.e11–3.e16 (2007).

    Google Scholar 

  134. Haïssaguerre, M. et al. Sudden cardiac arrest associated with early repolarization. N. Engl. J. Med. 358, 2016–2023 (2008).

    PubMed  Google Scholar 

  135. Rosso, R. et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects: incidence and clinical significance. J. Am Coll. Cardiol. 52, 1231–1238 (2008).

    PubMed  Google Scholar 

  136. Zipes, D. P. et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death). J. Am. Coll. Cardiol. 48, e247–e346 (2006).

    PubMed  Google Scholar 

  137. Rosso, R., Adler, A., Halkin, A. & Viskin, S. Risk of sudden death among young individuals with J waves and early repolarization: putting the evidence into perspective. Heart Rhythm 8, 923–929 (2011).

    PubMed  Google Scholar 

  138. Tikkanen, J. T. et al. Early repolarization: electrocardiographic phenotypes associated with favorable long-term outcome. Circulation 123, 2666–2673 (2011).

    PubMed  Google Scholar 

  139. Rosso, R. et al. Distinguishing “benign” from “malignant early repolarization”: the value of the ST-segment morphology. Heart Rhythm 9, 225–229 (2011).

    PubMed  Google Scholar 

  140. Antzelevitch, C. & Yan, G. X. J-wave syndromes: from cell to bedside. J. Electrocardiol. 44, 656–661 (2011).

    PubMed  PubMed Central  Google Scholar 

  141. Haïssaguerre, M. et al. Characteristics of recurrent ventricular fibrillation associated with inferolateral early repolarization role of drug therapy. J. Am. Coll. Cardiol. 53, 612–619 (2009).

    PubMed  Google Scholar 

  142. Letsas, K. P. et al. Prevalence of early repolarization pattern in inferolateral leads in patients with Brugada syndrome. Heart Rhythm 5, 1685–1689 (2008).

    PubMed  Google Scholar 

  143. Watanabe, H. et al. High prevalence of early repolarization in short QT syndrome. Heart Rhythm 7, 647–652 (2010).

    PubMed  Google Scholar 

  144. Splawski, I. et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    CAS  PubMed  Google Scholar 

  145. Gillis, J. et al. Long QT, syndactyly, joint contractures, stroke and novel CACNA1C mutation: expanding the spectrum of Timothy syndrome. Am. J. Med. Genet. A. http://dx.doi.org/10.1002/ajmg.a.34355.

  146. Splawski, I. et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc. Natl Acad. Sci. USA 102, 8089–8096 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Etheridge, S. P. et al. Somatic mosaicism contributes to phenotypic variation in Timothy syndrome. Am. Med. Genet. A. 155, 2578–2583 (2011).

    Google Scholar 

  148. Barrett, C. F. & Tsien, R. W. The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels. Proc. Natl Acad. Sci. USA 105, 2157–2162 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Yazawa, M. et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Pas¸ca, S. P. et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat. Med. 17, 1657–1662 (2011).

    Google Scholar 

  151. Bader, P. L. et al. Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proc. Natl Acad. Sci. USA 108, 15432–15437 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Jacobs, A., Knight, B. P., McDonald, K. T. & Burke, M. C. Verapamil decreases ventricular tachyarrhythmias in a patient with Timothy syndrome (LQT8). Heart Rhythm 3, 967–970 (2006).

    PubMed  Google Scholar 

  153. Sung, R. J. et al. Beta-adrenergic modulation of arrhythmogenesis and identification of targeted sites of antiarrhythmic therapy in Timothy (LQT8) syndrome: a theoretical study. Am. J. Physiol. Heart Circ. Physiol. 298, H33–H44 (2010).

    CAS  PubMed  Google Scholar 

  154. Sicouri, S. et al. Cellular basis for the electrocardiographic and arrhythmic manifestations of Timothy syndrome: effects of ranolazine. Heart Rhythm 4, 638–647 (2007).

    PubMed  PubMed Central  Google Scholar 

  155. Johns Hopkins University and US National Library of Medicine. Online Mendelian Inheritance in Man (OMIM) [online], (2012).

Download references

Acknowledgements

Part of the data presented here has been produced thanks to the contribution of the following research grants: Telethon grants GGP04066, GGP06007, and GGP11141 (to S. G. Priori), Italian University Research and Technology RFMAU207641137D (to S. G. Priori), Fondation Leducq Award to the Alliance for Calmodulin Kinase Signaling in Heart Disease (08CVD01) (to S. G. Priori), Fondation Veronesi “Modelli cellulari e terapia sperimentale dei difetti cardiaci associati a patologie aritmogene ereditarie” (to S. G. Priori). CARIPLO pr.2008.2275 (to S. G. Priori), and British Heart Foundation Intermediate Clinical Research Fellowship FS10/63/28,374 (to L. Venetucci and S. G. Priori).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content for this Review. In addition, L. Venetucci researched data for and wrote the article, M. Denegri and C. Napolitano reviewed/edited the manuscript before submission, and S. G. Priori wrote the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Silvia G. Priori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venetucci, L., Denegri, M., Napolitano, C. et al. Inherited calcium channelopathies in the pathophysiology of arrhythmias. Nat Rev Cardiol 9, 561–575 (2012). https://doi.org/10.1038/nrcardio.2012.93

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing