Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors

Key Points

  • Patients with left ventricular hypertrabeculation (LVHT) should undergo evaluation for neuromuscular disorders, and patients with neuromuscular disorders should be screened for cardiac involvement

  • The minimal set of neurological investigations includes a thorough collection of individual and family history, a clinical exam, determination of creatine-kinase activity, and an electromyograph

  • Relatives of patients with LVHT should be screened for LVHT, with the same diagnostic work-up as for index patients with LVHT

  • Partially in accordance with guidelines for oral anticoagulation in patients with LVHT, we recommend oral anticoagulation if a patient has atrial fibrillation, severe heart failure, previous embolism, or intracardiac thrombus formation

  • Patients with LVHT require an implantable cardioverter–defibrillator if ventricular arrhythmias are recorded; if the family history is positive for sudden cardiac death, arrhythmias, or LVHT; or if late gadolinium enhancement is associated with systolic dysfunction

Abstract

Left ventricular hypertrabeculation (LVHT) or noncompaction is a myocardial abnormality of unknown aetiology, frequently associated with monogenic disorders, particularly neuromuscular disorders, or with chromosomal defects. LVHT is diagnosed usually by echocardiography by the presence of a bilayered myocardium consisting of a thick, spongy, noncompacted endocardial layer and a thin, compacted, epicardial layer. The pathogenesis of LVHT is unsolved, and the diagnostic criteria, prognosis, and optimal treatment of patients with LVHT are under debate. LVHT is categorized as distinct primary genetic cardiomyopathy by the AHA and as unclassified cardiomyopathy by the ESC. LVHT is usually asymptomatic, but can be complicated by heart failure, thromboembolism, or ventricular arrhythmias, including sudden cardiac death. Mortality of patients with LVHT ranges from 5% to 47%. Anticoagulation is indicated if atrial fibrillation, severe heart failure, previous embolism, or intracardiac thrombus formation are present. In patients with LVHT with late gadolinium enhancement, an implantable cardioverter–defibrillator might be considered if systolic dysfunction, a family history of sudden cardiac death, nonsustained ventricular tachycardia, or previous syncope is additionally present. In this Review, we discuss the current findings on the aetiology and pathophysiology of LVHT, and provide an overview of the diagnosis, available treatment, and prognosis of this cardiomyopathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Left ventricular hypertrabeculation on transthoracic echocardiography and autopsy.
Figure 3: Left ventricular hypertrabeculation on cardiac MRI.

Similar content being viewed by others

References

  1. Hussein, A., Karimianpour, A., Collier, P. & Krasuski, R. A. Isolated Noncompaction of the Left Ventricle in Adults. J. Am. Coll. Cardiol. 66, 578–585 (2015).

    Article  PubMed  Google Scholar 

  2. Towbin, J. A., Lorts, A. & Jefferies, J. L. Left ventricular non-compaction cardiomyopathy. Lancet 386, 813–825 (2015).

    Article  PubMed  Google Scholar 

  3. Wan, J. et al. Varied distributions of late gadolinium enhancement found among patients meeting cardiovascular magnetic resonance criteria for isolated left ventricular non-compaction. J. Cardiovasc. Magn. Reson. 15, 20 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).

    Article  PubMed  Google Scholar 

  5. Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 29, 270–276 (2008).

    Article  PubMed  Google Scholar 

  6. Feldt, R. H., Rahimtoola, S. H., Davis, G. D., Swan, H. J. & Titus, J. L. Anomalous ventricular myocardial patterns in a child with complex congenital heart disease. Am. J. Cardiol. 23, 732–734 (1969).

    Article  CAS  PubMed  Google Scholar 

  7. Westwood, M., Harris, R., Burn, J. L. & Barson, A. J. Heredity in primary endocardial fibroelastosis. Br. Heart J. 37, 1077–1084 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dusek, J., Ostádal, B. & Duskova, M. Postnatal persistence of spongy myocardium with embryonic blood supply. Arch. Pathol. 99, 312–317 (1975).

    CAS  PubMed  Google Scholar 

  9. Engberding, R. & Bender, F. Identification of a rare congenital anomaly of the myocardium by two-dimensional echocardiography: persistence of isolated myocardial sinusoids. Am. J. Cardiol. 53, 1733–1734 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Chin, T. K., Perloff, J. K., Williams, R. G., Jue, K. & Mohrmann, R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82, 507–513 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Hany, T. F., Jenni, R. & Debatin, J. F. MR appearance of isolated noncompaction of the left ventricle. J. Magn. Reson. Imag. 7, 437–438 (1997).

    Article  CAS  Google Scholar 

  12. Finsterer, J., Stöllberger, C. & Kopsa, W. Noncompaction on cardiac MRI in a patient with nail-patella syndrome and mitochondriopathy. Cardiology 100, 48–49 (2003).

    Article  PubMed  Google Scholar 

  13. Finsterer, J., Stöllberger, C. & Schubert, B. Acquired left ventricular hypertrabeculation/noncompaction in mitochondriopathy. Cardiology 102, 228–230 (2004).

    Article  PubMed  Google Scholar 

  14. Menon, S. C. et al. Fetal and neonatal presentation of noncompacted ventricular myocardium: expanding the clinical spectrum. J. Am. Soc. Echocardiogr. 20, 1344–1350 (2007).

    Article  PubMed  Google Scholar 

  15. Grant, R. T. An unusual anomaly of the coronary vessels in the malformed heart of a child. Heart 13, 273–283 (1926).

    Google Scholar 

  16. Saeedan, M. B., Fathala, A. L. & Mohammed, T. L. Noncompaction cardiomyopathy: case presentation with cardiac magnetic resonance imaging findings and literature review. Heart Views 16, 164–167 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Finsterer, J. Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatr. Cardiol. 30, 659–681 (2009).

    Article  PubMed  Google Scholar 

  18. Johnson, M. T. et al. Intrafamilial variability of noncompaction of the ventricular myocardium. Am. Heart J. 151, 1012e7–1012e14 (2006).

    Article  Google Scholar 

  19. Towbin, J. A. Left ventricular noncompaction: a new form of heart failure. Heart Fail. Clin. 6, 453–469 (2010).

    Article  PubMed  Google Scholar 

  20. Bennett, C. E. & Freudenberger, R. The current approach to diagnosis and management of left ventricular noncompaction cardiomyopathy: review of the literature. Cardiol. Res. Pract. 2016, 5172308 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sedmera, D. & McQuinn, T. Embryogenesis of the heart muscle. Heart Fail Clin. 4, 235–245 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Henderson, D. J. & Anderson, R. H. The development and structure of the ventricles in the human heart. Pediatr. Cardiol. 30, 588–596 (2009).

    Article  PubMed  Google Scholar 

  23. Ichida, F. et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J. Am. Coll. Cardiol. 34, 233–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Zambrano, E., Marshalko, S. J., Jaffe, C. C. & Hui, P. Isolated noncompaction of the ventricular myocardium: clinical and molecular aspects of a rare cardiomyopathy. Lab Invest. 82, 117–122 (2002).

    Article  PubMed  Google Scholar 

  25. Oechslin, E. N., Attenhofer Jost, C. H., Rojas, J. R., Kaufmann, P. A. & Jenni, R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J. Am. Coll. Cardiol. 36, 493–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Weiford, B. C., Subbarao, V. D. & Mulhern, K. M. Noncompaction of the ventricular myocardium. Circulation 109, 2965–2971 (2004).

    Article  PubMed  Google Scholar 

  27. Goud, A. & Padmanabhan, S. A rare form of cardiomyopathy: left ventricular non-compaction cardiomyopathy. J. Community Hosp. Intern. Med. Perspect. 6, 29888 (2016).

    Article  PubMed  Google Scholar 

  28. Chen, H. et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131, 2219–2231 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, Z. et al. Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J. Biol. Chem. 289, 29801–29816 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, D. et al. Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development 138, 303–315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mysliwiec, M. R., Bresnick, E. H. & Lee, Y. Endothelial Jarid2/Jumonji is required for normal cardiac development and proper Notch1 expression. J. Biol. Chem. 286, 17193–17204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, H. et al. Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial Notch1 activity. Development 140, 1946–1957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. King, T., Bland, Y., Webb, S., Barton, S. & Brown, N. A. Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev. Dyn. 225, 212–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Stöllberger, C., Finsterer, J. & Blazek, G. Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders. Am. J. Cardiol. 90, 899–902 (2002).

    Article  PubMed  Google Scholar 

  35. Ichida, F. et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103, 1256–1263 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, R. et al. Noncompaction study collaborators. Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol. Genet. Metab. 77, 319–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Gati, S. et al. Increased left ventricular trabeculation in individuals with sickle cell anaemia: physiology or pathology? Int. J. Cardiol. 168, 1658–1660 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Finsterer, J., Stöllberger, C. & Schubert, B. Acquired left ventricular noncompaction as a cardiac manifestation of neuromuscular disorders. Scand. Cardiovasc. J. 42, 25–30 (2008).

    Article  PubMed  Google Scholar 

  39. D'Ascenzi, F., Pelliccia, A., Natali, B. M., Bonifazi, M. & Mondillo, S. Exercise-induced left-ventricular hypertrabeculation in athlete's heart. Int. J. Cardiol. 181, 320–322 (2015).

    Article  PubMed  Google Scholar 

  40. Gati, S. et al. Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation 130, 475–483 (2014).

    Article  PubMed  Google Scholar 

  41. Rehfeldt, K. H., Pulido, J. N., Mauermann, W. J. & Click, R. L. Left ventricular hypertrabeculation/noncompaction in a patient with peripartum cardiomyopathy. Int. J. Cardiol. 139, e18–e20 (2010).

    Article  PubMed  Google Scholar 

  42. Stöllberger, C. et al. Disappearance of left ventricular hypertrabeculation/noncompaction in vacuolar non-neuromuscular cardiomyopathy. Int. J. Cardiol. 179, 5–8 (2015).

    Article  PubMed  Google Scholar 

  43. Finsterer, J., Stöllberger, C., Grassberger, M. & Gerger, D. Mitochondrial myopathy with disappearance of noncompaction within a thickening myocardium. Int. J. Cardiol. 167, e101–e103 (2013).

    Article  PubMed  Google Scholar 

  44. Stähli, B. E. et al. Left ventricular non-compaction: prevalence in congenital heart disease. Int. J. Cardiol. 167, 2477–2481 (2013).

    Article  PubMed  Google Scholar 

  45. Ramachandran, P. et al. The impact of concomitant left ventricular non-compaction with congenital heart disease on perioperative outcomes. Pediatr. Cardiol. 37, 1307–1312 (2016).

    Article  PubMed  Google Scholar 

  46. Arbustini, E., Favalli, V., Narula, N., Serio, A. & Grasso, M. Left ventricular noncompaction: a distinct genetic cardiomyopathy? J. Am. Coll. Cardiol. 68, 949–966 (2016).

    Article  PubMed  Google Scholar 

  47. Finsterer, J. & Zarrouk-Mahjoub, S. Considerations about the genetics of left ventricular hypertrabeculation/ non-compaction. Cardiol. Young 25, 1435–1437 (2015).

    Article  PubMed  Google Scholar 

  48. Schweizer, P. A. et al. The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. J. Am. Coll. Cardiol. 64, 757–767 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, Z. et al. A novel lamin A/C gene missense mutation (445 V > E) in immunoglobulin-like fold associated with left ventricular non-compaction. Europace 18, 617–622 (2016).

    Article  PubMed  Google Scholar 

  50. Bhatia, N. L., Tajik, A. J., Wilansky, S., Steidley, D. E. & Mookadam, F. Isolated noncompaction of the left ventricular myocardium in adults: a systematic overview. J. Card Fail 17, 771–778 (2011).

    Article  PubMed  Google Scholar 

  51. Caliskan, K. Noncompaction cardiomyopathy, a frequently overlooked entity (...but beware of over diagnosis!). Neth. Heart J. 20, 387–388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Andrews, R. E., Fenton, M. J., Ridout, D. A. & Burch, M. British Congenital Cardiac Association. New-onset heart failure due to heart muscle disease in childhood: a prospective study in the United Kingdom and Ireland. Circulation 117, 79–84 (2008).

    Article  PubMed  Google Scholar 

  53. Ozkutlu, S., Ayabakan, C., Celiker, A. & Elshershari, H. Noncompaction of ventricular myocardium: a study of twelve patients. J. Am. Soc. Echocardiogr 15, 1523–1528 (2002).

    Article  PubMed  Google Scholar 

  54. Stöllberger, C., Blazek, G., Winkler-Dworak, M. & Finsterer, J. Sex differences in left ventricular noncompaction in patients with and without neuromuscular disorders. Rev. Esp. Cardiol. 61, 130–136 (2008).

    Article  PubMed  Google Scholar 

  55. Kovacevic-Preradovic, T. et al. Isolated left ventricular noncompaction as a cause for heart failure and heart transplantation: a single center experience. Cardiology 112, 158–164 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Patrianakos, A. P., Parthenakis, F. I., Nyktari, E. G. & Vardas, P. E. Noncompaction myocardium imaging with multiple echocardiographic modalities. Echocardiography 25, 898–900 (2008).

    Article  PubMed  Google Scholar 

  57. Ritter, M. et al. Isolated noncompaction of the myocardium in adults. Mayo Clin. Proc. 72, 26–31 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Arbustini, E., Weidemann, F. & Hall, J. L. Left ventricular noncompaction: a distinct cardiomyopathy or a trait shared by different cardiac diseases? J. Am. Coll. Cardiol. 64, 1840–1850 (2014).

    Article  PubMed  Google Scholar 

  59. Kohli, S. K. et al. Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur. Heart J. 29, 89–95 (2008).

    Article  PubMed  Google Scholar 

  60. Peters, F. et al. Isolated left ventricular noncompaction in sub-Saharan Africa: a clinical and echocardiographic perspective. Circ. Cardiovasc. Imag. 5, 187–193 (2012).

    Article  Google Scholar 

  61. Jefferies J. L. et al. Pediatric Cardiomyopathy Registry Investigators. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the Pediatric Cardiomyopathy Registry. J. Card. Fail 21, 877–884 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pignatelli, R. H. et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 108, 2672–2678 (2003).

    Article  PubMed  Google Scholar 

  63. Brescia, S. T. et al. Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation 127, 2202–2208 (2013).

    Article  PubMed  Google Scholar 

  64. Stöllberger, C. & Finsterer, J. Unmet needs in the cardiologic and neurologic work-up of left ventricular hypertrabeculation/noncompaction. Expert Rev. Cardiovasc. Ther. 14, 1151–1160 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Finsterer, J. & Stöllberger, C. Unclassified cardiomyopathies in neuromuscular disorders. Wien Med. Wochenschr. 163, 505–513 (2013).

    Article  PubMed  Google Scholar 

  66. Stöllberger, C., Blazek, G., Wegner, C., Winkler-Dworak, M. & Finsterer, J. Neuromuscular and cardiac comorbidity determines survival in 140 patients with left ventricular hypertrabeculation/noncompaction. Int. J. Cardiol. 150, 71–74 (2011).

    Article  PubMed  Google Scholar 

  67. Agmon, Y., Connolly, H. M., Olson, L. J., Khandheria, B. K. & Seward, J. B. Noncompaction of the ventricular myocardium. J. Am. Soc. Echocardiogr. 12, 859–863 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Sato, Y. et al. Subendomyocardial perfusion abnormality and necrosis detected by magnetic resonance imaging in a patient with isolated noncompaction of the ventricular myocardium associated with ventricular tachycardia. Cardiovasc. Revasc. Med. 10, 66–68 (2009).

    Article  PubMed  Google Scholar 

  69. Soler, R., Rodrıguez, E., Monserrat, L. & Alvarez, N. MRI of subendocardial perfusion deficits in isolated left ventricular noncompaction. J. Comput. Assist. Tomogr. 26, 373–375 (2002).

    Article  PubMed  Google Scholar 

  70. Junga, G., Kneifel, S., Von Smekal, A., Steinert, H. & Bauersfeld, U. Myocardial ischaemia in children with isolated ventricular noncompaction. Eur. Heart J. 20, 910–916 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Jenni, R., Wyss, C. A., Oechslin, E. N. & Kaufmann, P. A. Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction. J. Am. Coll. Cardiol. 39, 450–454 (2002).

    Article  PubMed  Google Scholar 

  72. Hook, S., Ratliff, N. B., Rosenkranz, E. & Sterba, R. Isolated noncompaction of the ventricular myocardium. Pediatr. Cardiol. 17, 43–45 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Cho, H. J. & Ma, J. S. Left ventricular non-compaction progression to dilated cardiomyopathy following acute myocarditis in an early infant twin. Minerva Pediatr. 67, 199–202 (2015).

    CAS  PubMed  Google Scholar 

  74. Gungor, B., Alper, A. T., Celebi, A. & Bolca, O. Sinus node dysfunction as the first manifestation of left ventricular noncompaction with multiple cardiac abnormalities. Indian Pacing Electrophysiol. J. 13, 157–161 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rigopoulos, A. et al. Isolated left ventricular noncompaction: an unclassified cardiomyopathy with severe prognosis in adults. Cardiology 98, 25–32 (2002).

    Article  PubMed  Google Scholar 

  76. Steffel, J. et al. Long-term follow-up of patients with isolated left ventricular noncompaction: role of electrocardiography in predicting poor outcome. Circ. J. 75, 1728–1734 (2011).

    Article  PubMed  Google Scholar 

  77. Stöllberger, C. et al. Frequency of stroke and embolism in left ventricular hypertrabeculation/noncompaction. Am. J. Cardiol. 108, 1021–1023 (2011).

    Article  PubMed  Google Scholar 

  78. Stöllberger, C. et al. Neuromuscular comorbidity, heart failure, and atrial fibrillation as prognostic factors in left ventricular hypertrabeculation/noncompaction. Herz 40, 906–911 (2015).

    Article  PubMed  Google Scholar 

  79. Nagel, B. et al. Left ventricular hypertrabeculation/noncompaction with epilepsy, other heart defects, minor facial anomalies and new copy number variants. BMC Med. Genet. 13, 60 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Burke, A., Mont, E., Kutys, R. & Virmani, R. Left ventricular noncompaction: a pathological study of 14 cases. Hum. Pathol. 36, 403–411 (2005).

    Article  PubMed  Google Scholar 

  81. Captur, G. et al. Quantification of left ventricular trabeculae using fractal analysis. J. Cardiovasc. Magn. Reson. 15, 36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pacileo, G. et al. Prolonged left ventricular twist in cardiomyopathies: a potential link between systolic and diastolic dysfunction. Eur. J. Echocardiogr. 12, 841–849 (2011).

    Article  PubMed  Google Scholar 

  83. Stöllberger, C., Gerecke, B., Finsterer, J. & Engberding, R. Refinement of echocardiographic criteria for left ventricular noncompaction. Int. J. Cardiol. 165, 463–467 (2013).

    Article  PubMed  Google Scholar 

  84. Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr 28, 1–39 (2015).

    Article  PubMed  Google Scholar 

  85. Stöllberger, C. et al. Interobserver agreement of the echocardiographic diagnosis of LV hypertrabeculation/noncompaction. JACC Cardiovasc. Imaging 8, 1252–1257 (2015).

    Article  PubMed  Google Scholar 

  86. Saleeb, S. F. et al. Reproducibility of echocardiographic diagnosis of left ventricular noncompaction. J. Am. Soc. Echocardiogr 25, 194–202 (2012).

    Article  PubMed  Google Scholar 

  87. van Dalen, B. M. et al. Diagnostic value of rigid body rotation in noncompaction cardiomyopathy. J. Am. Soc. Echocardiogr 24, 548–555 (2011).

    Article  PubMed  Google Scholar 

  88. Baker, G. H., Pereira, N. L., Hlavacek, A. M., Chessa, K. & Shirali, G. Transthoracic real-time three-dimensional echocardiography in the diagnosis and description of noncompaction of ventricular myocardium. Echocardiography 23, 490–494 (2006).

    Article  PubMed  Google Scholar 

  89. Koo, B. K. et al. Isolated noncompaction of the ventricular myocardium: contrast echocardiographic findings and review of the literature. Echocardiography 19, 153–156 (2002).

    Article  PubMed  Google Scholar 

  90. Bhat, T. et al. Isolated left ventricular noncompaction cardiomyopathy diagnosed by transesophageal echocardiography. Clin. Med. Insights Cardiol. 5, 23–27 (2011).

    PubMed  PubMed Central  Google Scholar 

  91. Moustafa, S. et al. Unusual myocardial late gadolinium enhancement in isolated noncompaction cardiomyopathy. Echocardiography 32, 400–402 (2015).

    Article  PubMed  Google Scholar 

  92. Dawson, D. K. et al. Regional thicknesses and thickening of compacted and trabeculated myocardial layers of the normal left ventricle studied by cardiovascular magnetic resonance. Circ. Cardiovasc. Imag. 4, 139–146 (2011).

    Article  Google Scholar 

  93. Petersen, S. E. et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 46, 101–105 (2005).

    Article  PubMed  Google Scholar 

  94. Kawel, N. et al. Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis. Circ. Cardiovasc. Imag. 5, 357–366 (2012).

    Article  Google Scholar 

  95. Jacquier, A. et al. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur. Heart J. 31, 1098–1104 (2010).

    Article  PubMed  Google Scholar 

  96. Fazio, G. et al. Magnetic resonance in isolated noncompaction of the ventricular myocardium. Int. J. Cardiol. 140, 367–369 (2010).

    Article  PubMed  Google Scholar 

  97. Ker, J., Du Toit-Prinsloo, L., Van Heerden, W. F. & Saayman, G. Subendocardial fibrosis in left ventricular hypertrabeculation-cause or consequence? Clin. Med. Insights Cardiol. 5, 13–16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Etesami, M., Gilkeson, R. C. & Rajiah, P. Utility of late gadolinium enhancement in pediatric cardiac MRI. Pediatr. Radiol. 46, 1096–1113 (2016).

    Article  PubMed  Google Scholar 

  99. Casella, M. et al. Characterization of the electroanatomic substrate in a case of noncompaction left ventricle. J. Cardiovasc. Med. (Hagerstown) 9, 636–638 (2008).

    Article  Google Scholar 

  100. Dodd, J. D. et al. Quantification of left ventricular noncompaction and trabecular delayed hyperenhancement with cardiac MRI: correlation with clinical severity. Am. J. Roentgenol. 189, 974–980 (2007).

    Article  Google Scholar 

  101. Zuccarino, F. et al. Left ventricular noncompaction: imaging findings and diagnostic criteria. Am. J. Roentgenol. 204, W519–W530 (2015).

    Article  Google Scholar 

  102. Salazar González, J. J. et al. Isolated non-compaction of the ventricular myocardium. An. Esp. Pediatr. 57, 570–573 (2002).

    Article  PubMed  Google Scholar 

  103. Kawasaki, T. et al. Heart rate variability in adult patients with isolated left ventricular noncompaction. Int. J. Cardiol. 99, 147–150 (2005).

    Article  PubMed  Google Scholar 

  104. Fazio, G. et al. Supraventricular arrhythmias in noncompaction of left ventricle: is this a frequent complication? Int. J. Cardiol. 127, 255–256 (2008).

    Article  PubMed  Google Scholar 

  105. Hamamichi, Y. et al. Isolated noncompaction of the ventricular myocardium: ultrafast computed tomography and magnetic resonance imaging. Int. J. Cardiovasc. Imag. 17, 305–314 (2001).

    Article  CAS  Google Scholar 

  106. Planas, S. et al. Association of ventricular noncompaction and histiocytoid cardiomyopathy: case report and review of the literature. Pediatr. Dev. Pathol. 15, 397–402 (2012).

    Article  PubMed  Google Scholar 

  107. Wlodarska, E. K. et al. Isolated ventricular noncompaction mimicking arrhythmogenic right ventricular cardiomyopathy—a study of nine patients. Int. J. Cardiol. 145, 107–111 (2010).

    Article  PubMed  Google Scholar 

  108. Hoedemaekers, Y. M. et al. Cardiac β-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur. Heart J. 28, 2732–2737 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Klaassen, S. et al. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117, 2893–2901 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Tian, L. et al. Ventricular non-compaction cardiomyopathy: prenatal diagnosis and pathology. Prenat. Diagn. 35, 221–227 (2015).

    Article  PubMed  Google Scholar 

  111. Li, J. et al. Effects of β-blocker therapy on electrocardiographic and echocardiographic characteristics of left ventricular noncompaction. Clin. Res. Cardiol. 104, 241–249 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Toyono, M. et al. Effects of carvedilol on left ventricular function, mass, and scintigraphic findings in isolated left ventricular non-compaction. Heart 86, E4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Stöllberger, C. & Finsterer, J. A. Probable life-saving switch from apixaban to phenprocoumon. Heart Surg. Forum 18, E186–E187 (2015).

    Article  PubMed  Google Scholar 

  114. Stöllberger, C., Wegner, C. & Finsterer, J. CHADS2- and CHA2DS2VASc scores and embolic risk in left ventricular hypertrabeculation/noncompaction. J. Stroke Cerebrovasc. Dis. 22, 709–712 (2013).

    Article  PubMed  Google Scholar 

  115. Angelini, A., Melacini, P., Barbero, F. & Thiene, G. Evolutionary persistence of spongy myocardium in humans. Circulation 99, 2475 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Caliskan, K. et al. Indications and outcome of implantable cardioverter-defibrillators for primary and secondary prophylaxis in patients with noncompaction cardiomyopathy. J. Cardiovasc. Electrophysiol. 22, 898–904 (2011).

    Article  PubMed  Google Scholar 

  117. Oechslin, E. & Jenni, R. Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur. Heart J. 32, 1446–1456 (2011).

    Article  PubMed  Google Scholar 

  118. Alper, A. T., Güngör, B., Tekkesin, A. I. & Türkkan, C. Catheter ablation of ventricular arrhythmia originating in the tricuspid annulus in a patient with biventricular noncompaction: a case report. Turk Kardiyol. Dern. Ars. 43, 568–571 (2015).

    PubMed  Google Scholar 

  119. Al-Kindi, S. G. et al. Heart transplant outcomes in patients with left ventricular non-compaction cardiomyopathy. J. Heart Lung Transplant. 34, 761–765 (2015).

    Article  PubMed  Google Scholar 

  120. Sundararajan, S., Thiruchelvam, T., Hsia, T. Y. & Karimova, A. New 15-mL ventricular assist device in children with restrictive physiology of the left ventricle. J. Thorac. Cardiovasc. Surg. 147, e79–80 (2014).

    Article  PubMed  Google Scholar 

  121. Gan, C., Hu, J., Luo, S., An, Q. & Lin, K. Surgical restoration of left ventricular diastolic function: possible treatment for noncompaction cardiomyopathy. J. Card. Surg. 29, 827–828 (2014).

    Article  PubMed  Google Scholar 

  122. Yu, W. Z., Wang, Y., Zheng, J. W. & Zou, C. Congenital heart surgery in patients with ventricular noncompaction. J. Card Surg. 30, 179–184 (2015).

    Article  PubMed  Google Scholar 

  123. Uchiyama, T. et al. Surgical repair of left ventricular noncompaction in a patient with a novel mutation of the myosin heavy chain 7 gene. Tohoku J. Exp. Med. 228, 301–304 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Muser, D. et al. Clinical spectrum of isolated left ventricular noncompaction: thromboembolic events, malignant left ventricular arrhythmias, and refractory heart failure. J. Am. Coll. Cardiol. 63, e39 (2014).

    Article  PubMed  Google Scholar 

  125. Bharucha, T. et al. NACCS (National Australian Childhood Cardiomyopathy Study) Investigators. Sudden death in childhood cardiomyopathy: results from a long-term national population-based study. J. Am. Coll. Cardiol. 65, 2302–2310 (2015).

  126. Greutmann, M. et al. Predictors of adverse outcome in adolescents and adults with isolated left ventricular noncompaction. Am. J. Cardiol. 109, 276–281 (2012).

    Article  PubMed  Google Scholar 

  127. Stöllberger, C., Blazek, G., Wegner, C. & Finsterer, J. Neurological comorbidity affects prognosis in left ventricular hypertrabeculation/noncompaction. Heart Lung 41, 594–598 (2012).

    Article  PubMed  Google Scholar 

  128. Peters, F. et al. Clinical outcomes in patients with isolated left ventricular noncompaction and heart failure. J. Card. Fail. 20, 709–715 (2014).

    Article  PubMed  Google Scholar 

  129. Tian, T. et al. Isolated left ventricular noncompaction: clinical profile and prognosis in 106 adult patients. Heart Vessels 29, 645–652 (2014).

    Article  PubMed  Google Scholar 

  130. Pulignano, G. et al. Noncompaction and embolic myocardial infarction: the importance of oral anticoagulation. Rev. Port. Cardiol. 34, 497e1–497e4 (2015).

    Article  Google Scholar 

  131. Hojjati, M. R., Rozo, J. C., Nazeri, A. & Cheong, B. Y. A rare pairing: myocardial noncompaction and congenital absence of pericardium. Tex. Heart Inst. J. 40, 500–501 (2013).

    PubMed  PubMed Central  Google Scholar 

  132. Isilak, Z., Incedayi, M., Aribal, S., Saglam, M. & Yalcin, M. Coexistence of left ventricular noncompaction and aortic interruption. Echocardiography 30, E220–221 (2013).

    Article  PubMed  Google Scholar 

  133. Ursell, P. C. Noncompaction in the fetus and neonate: an autopsy study. Am. J. Med. Genet. C Semin. Med. Genet. 163C, 169–177 (2013).

    Article  PubMed  Google Scholar 

  134. Wang, C., Miao, Q., Liu, X. & Li, X. Surgery for congenital aortic stenosis in children with left ventricular noncompaction. J. Card. Surg. 28, 465–466 (2013).

    Article  PubMed  Google Scholar 

  135. Dabek, J., Majewski, M., Walkowicz, W. & Gasior, Z. A patient with abnormalities of the coronary arteries and non-compaction of the left ventricular myocardium resulting in ischaemic heart disease symptoms. Folia Morphol. (Warsz) 74, 518–523 (2015).

    Article  CAS  Google Scholar 

  136. Patrignani, A., D'Aroma, A. & Cicogna, S. Unusual association between “congenitally corrected transposition of the great arteries” and “noncompaction” of the right systemic ventricle. Int. J. Cardiovasc. Imag. 25, 551–553 (2009).

    Article  Google Scholar 

  137. Jiang, B. et al. Giant aneurysm of right coronary artery fistula into left ventricle coexisting with noncompaction of left ventricular myocardium. Ann. Thorac. Surg. 98, e85–86 (2014).

    Article  PubMed  Google Scholar 

  138. Chen, Y. et al. A case of non-compaction ventricular myocardium and multiple coronary artery-to-right ventricle fistulae. Int. J. Cardiol. 184, 659–663 (2015).

    Article  PubMed  Google Scholar 

  139. Novo, G., Dendramis, G., Marrone, G., Novo, S. & Thiene, G. Left ventricular noncompaction presenting like a double-chambered left ventricle. J. Cardiovasc. Med. (Hagerstown) 16, 522–524 (2015).

    Article  Google Scholar 

  140. Sugiyama, H., Hoshiai, M., Toda, T. & Nakazawa, S. Double-orifice mitral valve associated with noncompaction of left ventricular myocardium. Pediatr. Cardiol. 27, 746–749 (2006).

    Article  PubMed  Google Scholar 

  141. Attenhofer Jost, C. H. et al. Noncompacted myocardium in Ebstein's anomaly: initial description in three patients. J. Am. Soc. Echocardiogr. 17, 677–680 (2004).

    Article  PubMed  Google Scholar 

  142. McMahon, C. J. & Nolke, L. Successful palliation of a child with left ventricular noncompaction cardiomyopathy and tricuspid atresia to Fontan procedure. Ann. Thorac Surg. 98, 719–721 (2014).

    Article  PubMed  Google Scholar 

  143. Iacovelli, F. et al. Striking coronary artery pattern in a grown-up congenital heart disease patient. Case Rep. Cardiol. 2016, 5482578 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Stacey, R. B. et al. Mitral regurgitation in left ventricular noncompaction cardiomyopathy assessed by cardiac MRI. J. Heart Valve Dis. 23, 591–597 (2014).

    PubMed  Google Scholar 

  145. Igarashi, T. et al. Left ventricular noncompaction complicated by mitral valve prolapse: report of a case. Surg. Today 43, 818–820 (2013).

    Article  PubMed  Google Scholar 

  146. Kucukdurmaz, Z., Kizilkan, N., Akkoyun, D. C., Sari, I. & Davutoglu, V. Isolated left ventricular myocardial non-compaction coexists with myocardial coronary artery bridge as a cause of ischaemic ECG changes. Int. J. Cardiol. 130, e1–3 (2008).

    Article  PubMed  Google Scholar 

  147. Yang, H. J. et al. A rare combination of left ventricular noncompaction, patent ductus arteriosus, and persistent left superior vena cava demonstrated by multidetector computed tomography and echocardiography. Heart Lung 41, e35–38 (2012).

    Article  PubMed  Google Scholar 

  148. Ozyilmaz, I., Ergul, Y., Guzeltas, A. & Odemis, E. Possible link between right ventricular coronary sinusoids and noncompaction sinusoids in pulmonary atresia with intact ventricular septum patients that later develop left ventricular noncompaction. Med. Hypotheses 83, 53–55 (2014).

    Article  PubMed  Google Scholar 

  149. Tunaoglu, F. S., Kula, S., Olguntürk, R. & Oztürk, G. Noncompaction with arcus aorta anomalies. Turk J. Pediatr. 45, 363–366 (2003).

    PubMed  Google Scholar 

  150. Haqmal, H., Ozturk, C., Aparci, M. & Sari, S. The association of ventricular noncompaction and apical long tunnel type ventricular septal defect causes electrocardiographic abnormality. Int. J. Cardiol. 187, 673–675 (2015).

    Article  PubMed  Google Scholar 

  151. Hirono, K., Hata, Y., Ibuki, K. & Yoshimura, N. Familial Ebstein's anomaly, left ventricular noncompaction, and ventricular septal defect associated with an MYH7 mutation. J. Thorac. Cardiovasc. Surg. 148, e223–226 (2014).

    Article  PubMed  Google Scholar 

  152. Kimura, K. et al. Prognostic impact of left ventricular noncompaction in patients with Duchenne/Becker muscular dystrophy—prospective multicenter cohort study. Int. J. Cardiol. 168, 1900–1904 (2013).

    Article  PubMed  Google Scholar 

  153. Finsterer, J., Stöllberger, C., Wexberg, P. & Schukro, C. Left ventricular hypertrabeculation/non-compaction in a Duchenne/Becker muscular dystrophy carrier with epilepsy. Int. J. Cardiol. 162, e3–e5 (2012).

    Article  PubMed  Google Scholar 

  154. Finsterer, J., Gelpi, E. & Stöllberger, C. Left ventricular hypertrabeculation/noncompaction as a cardiac manifestation of Duchenne muscular dystrophy under non-invasive positive-pressure ventilation. Acta Cardiol. 60, 445–448 (2005).

    Article  PubMed  Google Scholar 

  155. Parent, J. J., Towbin, J. A. & Jefferies, J. L. Left ventricular noncompaction in a family with lamin A/C gene mutation. Tex. Heart Inst. J. 42, 73–76 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Finsterer, J., Stölberger, C. & Kopsa, W. Noncompaction in myotonic dystrophy type 1 on cardiac MRI. Cardiology 103, 167–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Wahbi, K. et al. Left ventricular non-compaction in a patient with myotonic dystrophy type 2. Neuromuscul. Disord. 18, 331–333 (2008).

    Article  PubMed  Google Scholar 

  158. Thevathasan, W. et al. Oculopharyngodistal myopathy—a possible association with cardiomyopathy. Neuromuscul. Disord. 21, 121–125 (2011).

    Article  PubMed  Google Scholar 

  159. Xing, Y. et al. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol. Genet. Metab. 88, 71–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Esposito, T. et al. Digenic mutational inheritance of the integrin α7 and the myosin heavy chain 7B genes causes congenital myopathy with left ventricular non-compact cardiomyopathy. Orphanet J. Rare Dis. 8, 91 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Szentpáli, Z., Szili-Torok, T. & Caliskan, K. Primary electrical disorder or primary cardiomyopathy? A case with a unique association of noncompaction cardiomyopathy and cathecolaminergic polymorphic ventricular tachycardia caused by ryanodine receptor mutation. Circulation 127, 1165–1166 (2013).

    Article  PubMed  Google Scholar 

  162. Budde, B. S. et al. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS ONE 2, e1362 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chang, B. et al. Noncompaction study collaborators. Identification of a novel TPM1 mutation in a family with left ventricular noncompaction and sudden death. Mol. Genet. Metab. 102, 200–206 (2011).

    Article  PubMed  Google Scholar 

  164. Van Der Starre, P. et al. Late profound muscle weakness following heart transplantation due to Danon disease. Muscle Nerve 47, 135–137 (2013).

    Article  PubMed  Google Scholar 

  165. Lee, Y. C., Chang, C. J., Bali, D., Chen, Y. T. & Yan, Y. T. Glycogen-branching enzyme deficiency leads to abnormal cardiac development: novel insights into glycogen storage disease IV. Hum. Mol. Genet. 20, 455–465 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Goeppert, B. et al. Noncompaction myocardium in association with type Ib glycogen storage disease. Pathol. Res. Pract. 208, 620–622 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Prada, C. E. et al. Malonyl coenzyme A decarboxylase deficiency: early dietary restriction and time course of cardiomyopathy. Pediatrics 130, e456–e460 (2012).

    Article  PubMed  Google Scholar 

  168. Ojala, T. et al. Fetal left ventricular noncompaction cardiomyopathy and fatal outcome due to complete deficiency of mitochondrial trifunctional protein. Eur. J. Pediatr. 174, 1689–1692 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Finsterer, J., Schoser, B. & Stöllberger, C. Myoadenylate-deaminase gene mutation associated with left ventricular hypertrabeculation/ non-compaction. Acta Cardiol. 59, 453–456 (2004).

    Article  PubMed  Google Scholar 

  170. Alston, C. L. et al. A recessive homozygous p. Asp92Gly SDHD mutation causes prenatal cardiomyopathy and a severe mitochondrial complex II deficiency. Hum. Genet. 134, 869–879 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cosson, L. et al. Barth syndrome in a female patient. Mol. Genet. Metab. 106, 115–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Bleyl, S. B. et al. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am. J. Hum. Genet. 61, 868–872 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tanpaiboon, P. et al. Noncompaction of the ventricular myocardium and hydrops fetalis in cobalamin C disease. JIMD Rep. 10, 33–38 (2013).

    Google Scholar 

  174. Villa, C. R., Ryan, T. D., Taylor, M. D. & Jefferies, J. L. Response to: PLEC1 mutation associated with left ventricular hypertrabeculation/noncompaction. Neuromuscul. Disord. 25, 448–449 (2015).

    Article  PubMed  Google Scholar 

  175. Finsterer, J., Stöllberger, C. & Höftberger, R. Left ventricular hypertrabeculation/noncompaction in hereditary inclusion body myopathy. Int. J. Cardiol. 150, e67–e69 (2011).

    Article  PubMed  Google Scholar 

  176. Wang, J. et al. A combination of left ventricular hypertrabeculation/noncompaction and muscular dystrophy in a stroke patient. Int. J. Cardiol. 174, e68–e71 (2014).

    Article  PubMed  Google Scholar 

  177. Alter, P. & Maisch, B. Non-compaction cardiomyopathy in an adult with hereditary spherocytosis. Eur. J. Heart Fail. 9, 98–99 (2007).

    Article  PubMed  Google Scholar 

  178. Piga, A. et al. Left ventricular noncompaction in patients with β-thalassemia: uncovering a previously unrecognized abnormality. Am. J. Hematol. 87, 1079–1083 (2012).

    Article  PubMed  Google Scholar 

  179. Corrado, G., Checcarelli, N., Santarone, M., Stollberger, C. & Finsterer, J. Left ventricular hypertrabeculation/noncompaction with PMP22 duplication-based Charcot-Marie-Tooth disease type 1A. Cardiology 105, 142–145 (2006).

    Article  PubMed  Google Scholar 

  180. Martins, E. et al. Histopathological evidence of Fabry disease in a female patient with left ventricular noncompaction. Rev. Port. Cardiol. 33, 565e1–565e6 (2014).

    Article  Google Scholar 

  181. Rodríguez-Serrano, M. et al. Familial left ventricular noncompaction associated with a novel mutation in the α-cardiac actin gene. Rev. Esp. Cardiol. (Engl. Ed.) 67, 857–859 (2014).

    Article  Google Scholar 

  182. Bagnall, R. D. et al. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. BMC Med. Genet. 15, 99 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ojala, T. et al. New mutation of mitochondrial DNAJC19 causing dilated and noncompaction cardiomyopathy, anemia, ataxia, and male genital anomalies. Pediatr. Res. 72, 432–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Zarrouk Mahjoub, S. et al. Transition m.3308T>C in the ND1 gene is associated with left ventricular hypertrabeculation/noncompaction. Cardiology 118, 153–158 (2011).

    Article  PubMed  Google Scholar 

  185. Arndt, A. K. et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy. Am. J. Hum. Genet. 93, 67–77 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ripoll-Vera, T. et al. Clinical and prognostic profiles of cardiomyopathies caused by mutations in the troponin T gene. Rev. Esp. Cardiol. (Engl. Ed) 69, 149–158 (2016).

    Article  Google Scholar 

  187. Williams, T. et al. Novel desmoplakin mutation: juvenile biventricular cardiomyopathy with left ventricular non-compaction and acantholytic palmoplantar keratoderma. Clin. Res. Cardiol. 100, 1087–1093 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Muhammad, E. et al. PLEKHM2 mutation leads to abnormal localization of lysosomes, impaired autophagy flux and associates with recessive dilated cardiomyopathy and left ventricular noncompaction. Hum. Mol. Genet. 24, 7227–7240 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Limongelli, G. et al. Prevalence and clinical significance of cardiovascular abnormalities in patients with the LEOPARD syndrome. Am. J. Cardiol. 100, 736–741 (2007).

    Article  PubMed  Google Scholar 

  190. Kherbaoui-Redouani, L., Eschard, C., Bednarek, N. & Morville, P. Cutaneous aplasia, non compaction of the left ventricle and severe cardiac arrhythmia: a new case of MLS syndrome (microphtalmia with linear skin defects). Arch. Pediatr. 10, 224–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  191. Sun, X. L. et al. Unique case of a 12-year-old boy with Noonan syndrome combined with noncompaction of the ventricular myocardium. Int. Heart J. 57, 258–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Wu, W. et al. Novel phenotype–genotype correlations of restrictive cardiomyopathy with myosin-binding protein C (MYBPC3) gene mutations tested by next-generation sequencing. J. Am. Heart Assoc. 4, e001879 (2015).

    PubMed  PubMed Central  Google Scholar 

  193. Saccucci, P. et al. Isolated left ventricular noncompaction in a case of sotos syndrome: a casual or causal link? Cardiol. Res. Pract. 2011, 824095 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Matsumoto, T. et al. Transient cardiomyopathy in a patient with congenital contractural arachnodactyly (Beals syndrome). J. Nippon Med. Sch. 73, 285–288 (2006).

    Article  PubMed  Google Scholar 

  195. Yilmaz, S. et al. The expanding phenotypic spectrum of ARFGEF2 gene mutation: cardiomyopathy and movement disorder. Brain Dev. 38, 124–127 (2016).

    Article  PubMed  Google Scholar 

  196. Fichet, J., Legras, A., Bernard, A. & Babuty, D. Aborted sudden cardiac death revealing isolated noncompaction of the left ventricle in a patient with wolff-Parkinson-white syndrome. Pacing Clin. Electrophysiol. 30, 444–447 (2007).

    Article  PubMed  Google Scholar 

  197. Köksal, T., Gündüz, M., Özaydın, E. & Azak, E. 3-HMG coenzyme A lyase deficiency: macrocephaly and left ventricular noncompaction with a novel mutation. Indian J. Pediatr. 82, 645–648 (2015).

    Article  PubMed  Google Scholar 

  198. Egan, K. R., Ralphe, J. C., Weinhaus, L. & Maginot, K. R. Just sinus bradycardia or something more serious? Case Rep. Pediatr. 2013, 736164 (2013).

    Google Scholar 

  199. Milano, A. et al. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J. Am. Coll. Cardiol. 64, 745–756 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Nakashima, K. et al. A left ventricular noncompaction in a patient with long QT syndrome caused by a KCNQ1 mutation: a case report. Heart Vessels 28, 126–129 (2013).

    Article  PubMed  Google Scholar 

  201. Luxán, G. et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat. Med. 19, 193–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Guntheroth, W. et al. Wenckebach periodicity at rest that normalizes with tachycardia in a family with a NKX2.5 mutation. Am. J. Cardiol. 110, 1646–1650 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Bainbridge, M. N. et al. Loss of Function Mutations in NNT Are Associated With Left Ventricular Noncompaction. Circ. Cardiovasc. Genet. 8, 544–552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ramond, F. et al. Homozygous PKP2 deletion associated with neonatal Left Ventricule Non Compaction. Clin. Genet. http://dx.doi.org/10.1111/cge.12780 (2016).

  205. Campbell, M. J., Czosek, R. J., Hinton, R. B. & Miller, E. M. Exon 3 deletion of ryanodine receptor causes left ventricular noncompaction, worsening catecholaminergic polymorphic ventricular tachycardia, and sudden cardiac arrest. Am. J. Med. Genet. A 167A, 2197–2200 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Ohno, S. et al. Exon 3 deletion of RYR2 encoding cardiac ryanodine receptor is associated with left ventricular non-compaction. Europace 16, 1646–1654 (2014).

    Article  PubMed  Google Scholar 

  207. Shan, L. et al. SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia. Mol. Genet. Metab. 93, 468–474 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Hoedemaekers, Y. M. et al. The importance of genetic counseling, DNA diagnostics, and cardiologic family screening in left ventricular noncompaction cardiomyopathy Circ. Cardiovasc. Genet. 3, 232–239 (2010).

    Article  PubMed  Google Scholar 

  209. Chang, B. et al. 14-3-3ɛ gene variants in a Japanese patient with left ventricular noncompaction and hypoplasia of the corpus callosum. Gene 515, 173–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Lee, J., Rinehart, S. & Polsani, V. Left ventricular noncompaction cardiomyopathy: adult association with 1p36 deletion syndrome. Methodist Debakey Cardiovasc. J. 10, 258–259 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Kanemoto, N. et al. Interstitial 1q43-q43 deletion with left ventricular noncompaction myocardium. Eur. J. Med. Genet. 49, 247–253 (2006).

    Article  PubMed  Google Scholar 

  212. Pauli, R. M., Scheib-Wixted, S., Cripe, L., Izumo, S. & Sekhon, G. S. Ventricular noncompaction and distal chromosome 5q deletion. Am. J. Med. Genet. 85, 419–423 (1999).

    Article  CAS  PubMed  Google Scholar 

  213. Martinez, H. R. et al. Coffin-Lowry syndrome and left ventricular noncompaction cardiomyopathy with a restrictive pattern. Am. J. Med. Genet. A 155A, 3030–3034 (2011).

    Article  PubMed  Google Scholar 

  214. Blinder, J. J. et al. Noncompaction of the left ventricular myocardium in a boy with a novel chromosome 8p23.1 deletion. Am. J. Med. Genet. A 155A, 2215–2220 (2011).

    Article  CAS  PubMed  Google Scholar 

  215. Branton, H., Warren, A. E. & Penney, L. S. Left ventricular noncompaction and coronary artery fistula in an infant with deletion 22q11.2. Pediatr. Cardiol. 32, 208–210 (2011).

    Article  PubMed  Google Scholar 

  216. De Rosa, G. et al. Isolated myocardial non-compaction in an infant with distal 4q trisomy and distal 1q monosomy. Eur. J. Pediatr. 164, 255–256 (2005).

    Article  PubMed  Google Scholar 

  217. Sellars, E. A., Zimmerman, S. L., Smolarek, T. & Hopkin, R. J. Ventricular noncompaction and absent thumbs in a newborn with tetrasomy 5q35.2-5q35.3: an association with Hunter-McAlpine syndrome? Am. J. Med. Genet. A 155A, 1409–1413 (2011).

    Article  CAS  PubMed  Google Scholar 

  218. Wang, J. C., Dang, L., Mondal, T. K. & Khan, A. Prenatally diagnosed mosaic trisomy 22 in a fetus with left ventricular non-compaction cardiomyopathy. Am. J. Med. Genet. A 143A, 2744–2746 (2007).

    Article  PubMed  Google Scholar 

  219. Hussein, A., Schmaltz, A. A. & Trowitzsch, E. Isolated abnormality (“noncompaction”) of the myocardium in 3 children. Klin. Padiatr. 211, 175–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  220. Aypar, E., Sert, A., Gokmen, Z., Aslan, E. & Odabas, D. Isolated left ventricular noncompaction in a newborn with Pierre-Robin sequence. Pediatr. Cardiol. 34, 452–454 (2013).

    Article  PubMed  Google Scholar 

  221. Zaragoza, M. V., Arbustini, E. & Narula, J. Noncompaction of the left ventricle: primary cardiomyopathy with an elusive genetic etiology. Curr. Opin. Pediatr. 19, 619–627 (2007).

    Article  PubMed  Google Scholar 

  222. Yukifumi, M., Hirohiko, S., Fukiko, I. & Mariko, M. Trisomy 13 in a 9-year-old girl with left ventricular noncompaction. Pediatr. Cardiol. 32, 206–207 (2011).

    Article  PubMed  Google Scholar 

  223. Altenberger, H., Stöllberger, C. & Finsterer, J. Isolated left ventricular hypertrabeculation/noncompaction in a Turner mosaic with male phenotype. Acta Cardiol. 64, 99–103 (2009).

    Article  PubMed  Google Scholar 

  224. Stöllberger, C., Blazek, G., Wegner, C. & Finsterer, J. Heart failure, atrial fibrillation and neuromuscular disorders influence mortality in left ventricular hypertrabeculation/noncompaction. Cardiology 119, 176–182 (2011).

    Article  PubMed  Google Scholar 

  225. Stöllberger, C., Gerger, D., Wegner, C. & Finsterer, J. Quantitative electrocardiographic measures, neuromuscular disorders, and survival in left ventricular hypertrabeculation/noncompaction. Ann. Noninvasive Electrocardiol. 18, 251–255 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Stöllberger, C., Gerger, D., Jirak, P., Wegner, C. & Finsterer, J. Evolution of electrocardiographic abnormalities in association with neuromuscular disorders and survival in left ventricular hypertrabeculation/noncompaction. Ann. Noninvasive Electrocardiol. 19, 567–573 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Zuckerman, W. A. et al. Left-ventricular noncompaction in a pediatric population: predictors of survival. Pediatr. Cardiol. 32, 406–412 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.F. wrote the manuscript. J.F., C.S., and J.A.T. researched data for the article, provided substantial contribution to the discussion of content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Josef Finsterer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finsterer, J., Stöllberger, C. & Towbin, J. Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol 14, 224–237 (2017). https://doi.org/10.1038/nrcardio.2016.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing