Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways

Abstract

Tumor relapse and metastasis remain major obstacles for improving overall cancer survival, which may be due at least in part to the existence of cancer stem cells (CSCs). CSCs are characterized by tumorigenic properties and the ability to self-renew, form differentiated progeny, and develop resistance to therapy. CSCs use many of the same signaling pathways that are found in normal stem cells, such as Wnt, Notch, and Hedgehog (Hh). The origin of CSCs is not fully understood, but data suggest that they originate from normal stem or progenitor cells, or possibly other cancer cells. Therapeutic targeting of both CSCs and bulk tumor populations may provide a strategy to suppress tumor regrowth. Development of agents that target critical steps in the Wnt, Notch, and Hh pathways will be complicated by signaling cross-talk. The role that embryonic signaling pathways play in the function of CSCs, the development of new anti-CSC therapeutic agents, and the complexity of potential CSC signaling cross-talk are described in this Review.

Key Points

  • The stochastic model and cancer stem cell (CSC) model of tumorigenesis could be combined to help explain tumor relapse and metastasis

  • DNA mutations, microenvironmental factors, and/or epithelial-to-mesenchymal transition may drive CSCs towards a metastatic phenotype

  • Tumors composed of small populations of CSCs plus large numbers of bulk tumor cells may be particularly susceptible to combination drug regimens that target each cell population

  • The potential for cross-talk among signaling pathways by CSCs opens new opportunities for designing combination drug regimens

  • New experimental agents are being developed to block Wnt, Notch, and Hedgehog signaling by CSCs, some of which are being tested in early clinical trials

  • Measurement of biologic effects of anti-CSC therapeutic regimens will remain a challenge until more-effective methods to identify CSCs in vivo or in vitro surrogate assays are improved

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch signaling pathway inhibition.
Figure 2: Hedgehog signaling pathway inhibition.
Figure 3: Wnt/β-catenin signaling pathway inhibition.

Similar content being viewed by others

References

  1. Dick, J. E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Dick, J. E. Looking ahead in cancer stem cell research. Nat. Biotechnol. 27, 44–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Johnsen, H. E. et al. Cancer stem cells and the cellular hierarchy in haematological malignancies. Eur. J. Cancer 45 (Suppl. 1), 194–201 (2009).

    Article  PubMed  Google Scholar 

  4. Odoux, C. et al. A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res. 68, 6932–6941 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frank, N. Y., Schatton, T. & Frank, M. H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McGovern, M., Voutev, R., Maciejowski, J., Corsi, A. K. & Hubbard, E. J. A “latent niche” mechanism for tumor initiation. Proc. Natl Acad. Sci. USA 106, 11617–11622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peacock, C. D. et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc. Natl Acad. Sci. USA 104, 4048–4053 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. & Kirchner, T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat. Rev. Cancer 5, 744–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dieter, S. M. et al. Distinct types of human colon cancer initiating cells contribute to primary tumor and metastasis formation [abstract 9]. Proc. Am. Assoc. Cancer Res. (2010).

  12. Schmidt, M. et al. Polyclonal long-term repopulating stem cell clones in a primate model. Blood 100, 2737–2743 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Al-Hajj, M. et al. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Dalerba, P. et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl Acad. Sci. USA 104, 10158–10163 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104, 973–978 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Yamashita, T. et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136, 1012–1024 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, Z. F. et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153–166 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Bertolini, G. et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl Acad. Sci. USA 106, 16281–16286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, S. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68, 4311–4320 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, X. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan, K. S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA 106, 14016–14021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suvà, M. L. et al. Identification of cancer stem cells in Ewing's sarcoma. Cancer Res. 69, 1776–1781 (2009).

    Article  PubMed  CAS  Google Scholar 

  31. Huang, E. H. et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69, 3382–3389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Z. et al. Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res. 66, 2778–2784 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Dontu, G. et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6, R605–R615 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Rampal, R., Arboleda-Velasquez, J. F., Nita-Lazar, A., Kosik, K. S. & Haltiwanger, R. S. Highly conserved O-fucose sites have distinct effects on Notch1 function. J. Biol. Chem. 280, 32133–32140 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Gordon, W. R. et al. Structural basis for autoinhibition of Notch. Nat. Struct. Mol. Biol. 14, 295–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Real, P. J. et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat. Med. 15, 50–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Rizzo, P. et al. Rational targeting of Notch signaling in cancer. Oncogene 27, 5124–5131 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Duarte, A. et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 18, 2474–2478 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA 104, 3225–3230 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Yan, M. et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 463, E6–E7 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Moellering, R. E. et al. Direct inhibition of the NOTCH transcription factor complex. Nature 462, 182–188 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sawyer, T. K. AILERON Therapeutics. Chem. Biol. Drug Des. 73, 3–6 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Epenetos, A., Kousparou, C. & Stylianou, S. Inhibition of Notch signaling for the treatment of human carcinomas. AACR Meeting Abstracts A5502 (2009).

  50. Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature 455, 406–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Micchelli, C. A., The, I., Selva, E., Mogila, V. & Perrimon, N. Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development 129, 843–851 (2002).

    CAS  PubMed  Google Scholar 

  56. Ruiz i Altaba, A., Mas, C. & Stecca, B. The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol. 17, 438–447 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Adesina, A. M. et al. Gene expression profiling reveals signatures characterizing histologic subtypes of hepatoblastoma and global deregulation in cell growth and survival pathways. Hum. Pathol. 40, 843–853 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao, C. et al. Hedgehog signaling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458, 776–779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Feldmann, G. et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 67, 2187–2196 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Kiselyov, A. S. Targeting the hedgehog signaling pathway with small molecules. Anticancer Agents Med. Chem. 6, 445–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Rubin, L. L. & de Sauvage, F. J. Targeting the Hedgehog pathway in cancer. Nat. Rev. Drug Discov. 5, 1026–1033 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Stanton, B. Z. et al. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat. Chem. Biol. 5, 154–156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hyman, J. M. et al. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc. Natl Acad. Sci. USA 106, 14132–14137 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. LoRusso, P. M. et al. A first-in-human, first-in-class, phase (ph) I study of systemic Hedgehog (Hh) pathway antagonist, GDC-0449, in patients (pts) with advanced solid tumors [abstract]. J. Clin. Oncol. 26, a3516 (2008).

    Article  Google Scholar 

  68. Von Hoff, D. D. et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med. 361, 1164–1172 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Angers, S. & Moon, R. T. Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol. 10, 468–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Grigoryan, T., Wend, P., Klaus, A. & Birchmeier, W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 22, 2308–2341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Andrade, A. C., Nilsson, O., Barnes, K. M. & Baron, J. Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone 40, 1361–1369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Takada, R. et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11, 791–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Ching, W. & Nusse, R. A dedicated Wnt secretion factor. Cell 125, 432–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Hsieh, J. C., Rattner, A., Smallwood, P. M. & Nathans, J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl Acad. Sci. USA 96, 3546–3551 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schulte, G. & Bryja, V. The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 518–525 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. de La Coste, A. et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc. Natl Acad. Sci. USA 95, 8847–8851 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Kim, M. S., Kim, S. S., Ahn, C. H., Yoo, N. J. & Lee, S. H. Frameshift mutations of Wnt pathway genes AXIN2 and TCF7L2 in gastric carcinomas with high microsatellite instability. Hum. Pathol. 40, 58–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Koesters, R. et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms' tumors. Cancer Res. 59, 3880–3882 (1999).

    CAS  PubMed  Google Scholar 

  80. Martin, V. et al. Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia. Cancer Sci. 101, 425–432 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 452, 650–653 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Majeti, R. et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc. Natl Acad. Sci. USA 106, 3396–3401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Müller-Tidow, C. et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol. Cell Biol. 24, 2890–2904 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Emami, K. H. et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc. Natl Acad. Sci. USA 101, 12682–12687 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Takahashi-Yanaga, F. & Kahn, M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin. Cancer Res. 16, 3153–3162 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Fujii, N. et al. An antagonist of dishevelled protein-protein interaction suppresses beta-catenin-dependent tumor cell growth. Cancer Res. 67, 573–579 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Shan, J., Shi, D. L., Wang, J. & Zheng, J. Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry 44, 15495–15503 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. He, B. et al. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene 24, 3054–3058 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. You, L. et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res. 64, 5385–5389 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Shook, D. & Keller, R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech. Dev. 120, 1351–1383 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Kim, M. A. et al. Prognostic importance of epithelial-mesenchymal transition-related protein expression in gastric carcinoma. Histopathology 54, 442–451 (2009).

    Article  PubMed  Google Scholar 

  94. Mareel, M. et al. E-cadherin/catenin/cytoskeleton complex: a regulator of cancer invasion. J. Cell Physiol. 173, 271–274 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Dissanayake, S. K. et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J. Biol. Chem. 282, 17259–17271 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Vincan, E. & Barker, N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin. Exp. Metastasis 25, 657–663 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Massagué, J. TGFbeta in cancer. Cell 134, 215–230 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Bailey, J. M., Singh, P. K. & Hollingsworth, M. A. Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. J. Cell Biochem. 102, 829–839 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst. 100, 672–679 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Frank, N. Y. et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 65, 4320–4333 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E. & Gottesman, M. M. P-glycoprotein: from genomics to mechanism. Oncogene 22, 7468–7485 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Itasaki, N. & Hoppler, S. Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev. Dyn. 239, 16–33 (2010).

    CAS  PubMed  Google Scholar 

  105. Sun, L., Tian, Z. & Wang, J. A direct cross-talk between interferon-gamma and sonic hedgehog signaling that leads to the proliferation of neuronal precursor cells. Brain Behav. Immun. 24, 220–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Vivekanand, P. & Rebay, I. Intersection of signal transduction pathways and development. Annu. Rev. Genet. 40, 139–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Ma, J. et al. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J. Clin. Invest. 120, 103–114 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, Z. et al. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J. Cell. Biochem. 109, 726–736 (2010).

    CAS  PubMed  Google Scholar 

  109. Meurette, O. et al. Notch activation induces Akt signaling via an autocrine loop to prevent apoptosis in breast epithelial cells. Cancer Res. 69, 5015–5022 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Dai, J. et al. Cross-talk between Notch and EGFR signaling in human breast cancer cells. Cancer Invest. 27, 533–540 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Purow, B. W. et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis 29, 918–925 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Deb, S. P., Muñoz, R. M., Brown, D. R., Subler, M. A. & Deb, S. Wild-type human p53 activates the human epidermal growth factor receptor promoter. Oncogene 9, 1341–1349 (1994).

    CAS  PubMed  Google Scholar 

  113. Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Osipo, C. et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene 27, 5019–5032 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Hirose, H. et al. Notch pathway as candidate therapeutic target in Her2/Neu/ErbB2 receptor-negative breast tumors. Oncol. Rep. 23, 35–43 (2010).

    CAS  PubMed  Google Scholar 

  116. Guo, X. & Wang, X. F. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 19, 71–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Zavadil, J., Cermak, L., Soto-Nieves, N. & Böttinger, E. P. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23, 1155–1165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. He, J. et al. Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. J. Biol. Chem. 281, 35598–35602 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Bhagwandin, V. J. & Shay. J. W. Pancreatic cancer stem cells: fact or fiction? Biochim. Biophys. Acta 1792, 248–259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Deangelo, D. J. et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias [abstract]. J. Clin. Oncol. 24, a6585 (2006).

    Google Scholar 

  121. Peters, J. U. et al. Novel orally active, dibenzazepinone-based gamma-secretase inhibitors. Bioorg Med. Chem. Lett. 17, 5918–5923 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Kopan, R. & Ilagan, M. X. Gamma-secretase: proteasome of the membrane? Nat. Rev. Mol. Cell Biol. 5, 499–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Li, K. et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J. Biol. Chem. 283, 8046–8054 (2006).

    Article  CAS  Google Scholar 

  124. Hoey, T. et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5, 168–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Garcés, C. et al. Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J. Biol. Chem. 272, 29729–29734 (1997).

    Article  PubMed  Google Scholar 

  127. Nickoloff, B. J. et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ. 9, 842–855 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Rudin, C. M., Hann, C. L., Peacock, C. D. & Watkins, D. N. Novel systemic therapies for small cell lung cancer. J. Natl Compr. Canc. Netw. 6, 315–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Barginear, M. F., Leung, M. & Budman, D. R. The hedgehog pathway as a therapeutic target for treatment of breast cancer. Breast Cancer Res. Treat. 116, 239–246 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Fukukawa, C. Katagiri, T., Nakatsuru, S. & Nakamura, Y. Therapeutic potential of antibodies against frizzled homologue 10, a cell-surface protein, for synovial sarcoma [abstract]. Proc. Amer. Assoc. Cancer Res. 47, 1975 (2006).

    Google Scholar 

  131. Yoshizumi, T. et al. Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects. Int. J. Oncol. 25, 631–639 (2004).

    CAS  PubMed  Google Scholar 

  132. Arber, N. et al. Celecoxib for the prevention of colorectal adenomatous polyps. N. Engl. J. Med. 355, 885–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. van Stolk, R. et al. Phase I trial of exisulind (sulindac sulfone, FGN-1) as a chemopreventive agent in patients with familial adenomatous polyposis. Clin. Cancer Res. 6, 78–89 (2000).

    CAS  PubMed  Google Scholar 

  134. Cong, F., Zhang, J., Pao, W., Zhou, P. & Varmus, H. A protein knockdown strategy to study the function of beta-catenin in tumorigenesis. BMC Mol. Biol. 4, 10 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Liu, J., Stevens, J., Matsunami, N. & White, R. L. Targeted degradation of beta-catenin by chimeric F-box fusion proteins. Biochem. Biophys. Res. Commun. 313, 1023–1029 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Nagao, R. et al. A novel β-catenin inhibitor, AV65 suppresses the growth of CML cell lines which acquire imatinib-resistance because of Abl kinase domain mutations including T315I and hypoxia-adaptation. 50th ASH Annual Meeting and Exposition Abstracts, 1081 (2008).

    Google Scholar 

  137. Su, Y., Ishikawa, S., Kojima, M. & Liu, B. Eradication of pathogenic beta-catenin by Skp1/Cullin/F box ubiquitination machinery. Proc. Natl Acad. Sci. USA 100, 12729–12734 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N. Takebe, P. J. Harris, R. Q. Warren and S. P. Ivy contributed equally to the literature review, discussions of the content, writing and reviewing and editing of this manuscript before submission.

Corresponding author

Correspondence to S. Percy Ivy.

Ethics declarations

Competing interests

J. Cortés is a consultant for Roche. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takebe, N., Harris, P., Warren, R. et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8, 97–106 (2011). https://doi.org/10.1038/nrclinonc.2010.196

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.196

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer