Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

BRAF targeted therapy changes the treatment paradigm in melanoma

Abstract

After decades of stagnation, recent therapeutic advances in melanoma seem on the horizon. The discovery of the genetic underpinnings of this historically refractory disease has exposed potential targets for therapy, BRAF mutations being principal among them. In the 8 years following the discovery of BRAF mutations in 50–60% of advanced melanomas, only recently have potent and selective inhibitors of this intracellular signaling molecule shown efficacy from early clinical testing. Vemurafenib (PLX4032) and GSK2118436, two orally available and well tolerated agents are on the verge of transforming the landscape of melanoma therapy based on the promising results of their respective phase I, II, and III trials.

Key Points

  • BRAF is the most frequently mutated oncogene in melanoma

  • Selective BRAF inhibitors have produced tumor regression in the vast majority of patients with metastatic melanoma whose tumors harbor activating BRAF mutations

  • Selective BRAF inhibitors are associated with the appearance of keratinocyte proliferations in patients; upregulation of the MAPK pathway in normal cells observed in vitro may explain this observation

  • Additional oncogenic events are associated with BRAF mutations and may provide rational additional targets for combination therapy

  • Preliminary evidence suggests that selective BRAF inhibitors may complement immunotherapy by upregulating antigen expression but without inhibiting T-cell function

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Signal transduction through the MAP kinase pathway and the effect of BRAF inhibitors
Figure 3

Similar content being viewed by others

References

  1. Padua, R. A., Barrass, N. & Currie, G. A. A novel transforming gene in a human malignant melanoma cell line. Nature 311, 671–673 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Gray-Schopfer, V., Wellbrock, C. & Marais, R. Melanoma biology and new targeted therapy. Nature 445, 851–857 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Haluska, F. G. et al. Genetic alterations in signaling pathways in melanoma. Clin. Cancer Res. 12, 2301s–2307s (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Curtin, J. A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135–2147 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Wellcome Trust Sanger Institute Catalog of Somatic Mutations in Cancer [online], (2011).

  7. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Smalley, K. S. et al. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene 28, 85–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Uribe, P., Wistuba, I. I. & González, S. BRAF mutation: a frequent event in benign, atypical, and malignant melanocytic lesions of the skin. Am. J. Dermatopathol. 25, 365–370 (2003).

    Article  PubMed  Google Scholar 

  10. Dong, J. et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res. 63, 3883–3885 (2003).

    CAS  PubMed  Google Scholar 

  11. Eisen, T. et al. Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. Br. J. Cancer 95, 581–586 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Rinehart, J. et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J. Clin. Oncol. 22, 4456–4462 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Lorusso, P. et al. A phase 1–2 clinical study of a second generation oral MEK inhibitor, PD 0325901 in patients with advanced cancer [abstract]. J. Clin. Oncol. 23 (Suppl.), a3011 (2005).

    Article  Google Scholar 

  15. Dankort, D. et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michailidou, C. et al. Dissecting the roles of Raf- and PI3K-signalling pathways in melanoma formation and progression in a zebrafish model. Dis. Model Mech. 2, 399–411 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Dhomen, N. et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15, 294–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Hoeflich, K. P. et al. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 66, 999–1006 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kefford, R. et al. Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors [abstract]. J. Clin. Oncol. 28 (Suppl.), a8503 (2010).

    Article  Google Scholar 

  21. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. King, A. J. et al. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res. 66, 11100–11105 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Fischer, A. et al. Regulation of RAF activity by 14-3-3 proteins: RAF kinases associate functionally with both homo- and heterodimeric forms of 14-3-3 proteins. J. Biol. Chem. 284, 3183–3194 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Hall-Jackson, C. A. et al. Paradoxical activation of Raf by a novel Raf inhibitor. Chem. Biol. 6, 559–568 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Balmain, A., Ramsden, M., Bowden, G. T. & Smith, J. Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307, 658–660 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322, 78–80 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joseph, E. W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl Acad. Sci. USA 107, 14903–14908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Infante, J. R. et al. Safety and efficacy results from the first-in-human study of the oral MEK 1/2 inhibitor GSK1120212 [abstract]. J. Clin. Oncol. 28 (Suppl.), a2503 (2010).

    Article  Google Scholar 

  32. Dummer, R. et al. AZD6244 (ARRY-142886) vs temozolomide (TMZ) in patients (pts) with advanced melanoma: an open-label, randomized, multicenter, phase II study [abstract]. J. Clin. Oncol. 26 (Suppl.), a9033 (2008).

    Article  Google Scholar 

  33. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paraiso, K. H. et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br. J. Cancer 102, 1724–1730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sosman, J. et al. An open-label, multicenter phase II study of continuous oral dosing of RG7204 (PLX4032) in previously treated patients with BRAF V600E mutation-positive metastatic melanoma [abstract 30]. Pigment Cell Melanoma Res. 23 (Suppl.), 912 (2010).

    Google Scholar 

  39. Roche. Media release: Roche personalized investigational medicine shows survival benefit in advanced skin cancer [online], (2011).

  40. Kopetz, S. et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors [abstract]. J. Clin. Oncol. 28 (Suppl.), a3534 (2010).

    Article  Google Scholar 

  41. Lee, W. et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 465, 473–477 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Wellbrock, C. et al. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One 3, e2734 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Garraway, L. A. & Sellers, W. R. Lineage dependency and lineage-survival oncogenes in human cancer. Nat. Rev. Cancer 6, 593–602 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shah, N. P. et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Søndergaard, J. N. et al. Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032. J. Transl. Med. 8, 39 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Montagut, C. et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 68, 4853–4861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gray-Schopfer, V. C., Karasarides, M., Hayward, R. & Marais, R. Tumor necrosis factor-alpha blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res. 67, 122–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Goel, V. K., Lazar, A. J., Warneke, C. L., Redston, M. S. & Haluska, F. G. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J. Invest. Dermatol. 126, 154–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Smalley, K. S. et al. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol. Cancer Ther. 5, 1136–1144 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsao, H., Atkins, M. B. & Sober, A. J. Management of cutaneous melanoma. N. Engl. J. Med. 351, 998–1012 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Hunder, N. N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358, 2698–2703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 8, 299–308 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schumacher, L. Y. et al. Immunosensitization of tumor cells to dendritic cell-activated immune responses with the proteasome inhibitor bortezomib (PS-341, Velcade). J. Immunol. 176, 4757–4765 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Begley, J. & Ribas, A. Targeted therapies to improve tumor immunotherapy. Clin. Cancer Res. 14, 4385–4391 (2008).

    Article  PubMed  Google Scholar 

  59. Kono, M. et al. Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol. Cancer Res. 4, 779–792 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Boni, A. et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 70, 5213–5219 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Berridge, M. J. Lymphocyte activation in health and disease. Crit. Rev. Immunol. 17, 155–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Comin-Anduix, B. et al. The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations. Clin. Cancer Res. 16, 6040–6048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K. T. Flaherty was responsible for researching the data for this article. Both authors were involved in discussing the article content, writing the article and revising the manuscript throughout the submission process.

Corresponding author

Correspondence to Keith T. Flaherty.

Ethics declarations

Competing interests

Antoni Ribas declares he is a consultant for Genentech Roche. Keith T. Flaherty declares he is a consultant for Genentech Roche and GlaxoSmithKline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribas, A., Flaherty, K. BRAF targeted therapy changes the treatment paradigm in melanoma. Nat Rev Clin Oncol 8, 426–433 (2011). https://doi.org/10.1038/nrclinonc.2011.69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.69

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer