Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond aspirin—cancer prevention with statins, metformin and bisphosphonates

Key Points

  • Chemoprevention is a developing supplemental approach to promote cancer prevention, especially in high-risk populations

  • Studying commonly used drugs as candidate cancer chemopreventive agents has the advantage of usually having a low-risk profile and is associated with much clinical experience

  • Statins, bisphosphonates and metformin have all shown a promising degree of anticancer activity in several tumour sites

  • Evidence accumulated thus far is mostly mechanistic or from association studies in humans; data from randomized controlled trials are still lacking

  • The use of these agents for cancer chemoprevention is not yet formally indicated; however, it could be considered in high-risk populations especially if supporting pharmacogenetic markers of efficacy are available

Abstract

Cancer risk reduction using pharmacological means is an attractive modern preventive approach that supplements the classical behavioural prevention recommendations. Medications that are commonly used by large populations to treat a variety of common, non–cancer–related, medical situations are an attractive candidate pool. This Review discusses three pharmacological agents with the most evidence for their potential as cancer chemopreventive agents: anti–hypercholesterolaemia medications (statins), an antidiabetic agent (metformin) and antiosteoporosis drugs (bisphosphonates). Data are accumulating to support a significant negative association of certain statins with cancer occurrence or survival in several major tumour sites (mostly gastrointestinal tumours and breast cancer), with an augmented combined effect with aspirin or other non–steroidal anti–inflammatory drugs. Metformin, but not other hypoglycaemic drugs, also seems to have some antitumour growth activity, but the amount of evidence in human studies, mainly in breast cancer, is still limited. Experimental and observational data have identified bisphosphonates as a pharmacological group that could have significant impact on incidence and mortality of more than one subsite of malignancy. At the current level of evidence these potential chemopreventive drugs should be considered in high–risk situations or using the personalized approach of maximizing individual benefits and minimizing the potential for adverse effects with the aid of pharmacogenetic indicators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mevalonate pathway, statins and aminobisphosphonates.
Figure 2: Proposed molecular mechanisms of the anticancer effect of metformin.
Figure 3: Bisphophonates anticancer effect.

Similar content being viewed by others

References

  1. Cuzick, J. et al. Preventive therapy for breast cancer: a consensus statement. Lancet Oncol. 12, 496–503 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Thun, M. J., Jacobs, E. J. & Patrono, C. The role of aspirin in cancer prevention. Nat. Rev. Clin. Oncol. 9, 259–267 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Cuzick, J. et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 10, 501–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Rennert, G., Rennert, H. S., Pinchev, M. & Gruber, S. B. A case-control study of levothyroxine and the risk of colorectal cancer. J. Natl Cancer Inst. 102, 568–572 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arrieta, O. et al. Colchicine delays the development of hepatocellular carcinoma in patients with hepatitis virus-related liver cirrhosis. Cancer 107, 1852–1858 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Yasuda, T. et al. Anti-gout agent allopurinol exerts cytotoxicity to human hormone-refractory prostate cancer cells in combination with tumor necrosis factor-related apoptosis-inducing ligand. Mol. Cancer Res. 6, 1852–1860 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Umar, A., Dunn, B. K. & Greenwald, P. Future directions in cancer prevention. Nat. Rev. Cancer 12, 835–848 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Sperati, F. et al. Vitamin D supplementation and breast cancer prevention: a systematic review and meta-analysis of randomized clinical trials. PLoS ONE 8, e69269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murphy, M. S. & O'Brien, T. in Pharmacology and Therapeutics: principles to practice Ch. 23 (eds Waldman, S. A. & Terzic, A.) 303–320 (Elsevier, Amsterdam, 2009).

    Book  Google Scholar 

  10. Law, M. & Rudnicka, A. R. Statin safety: a systematic review. Am. J. Cardiol. 97, 52C–60C (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Gazzerro, P. et al. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol. Rev. 64, 102–146 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Jain, M. K. & Ridker, P. M. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat. Rev. Drug Discov. 4, 977–987 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Kwak, B., Mulhaupt, F., Myit, S. & Mach, F. Statins as a newly recognized type of immunomodulator. Nat. Med. 6, 1399–1402 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein, J. L. & Brown, M. S. Regulation of the mevalonate pathway. 343, 425–430 (1990).

  15. Clendening, J. W. et al. Dysregulation of the mevalonate pathway promotes transformation. Proc. Natl Acad. Sci. USA 107, 15051–15056 (2010).

    Article  PubMed  Google Scholar 

  16. Inano, H., Suzuki, K., Onoda, M. & Wakabayashi, K. Anti-carcinogenic activity of simvastatin during the promotion phase of radiation-induced mammary tumorigenesis of rats. Carcinogenesis 18, 1723–1727 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Alonso, D. F. et al. Reduction of mouse mammary tumor formation and metastasis by lovastatin, an inhibitor of the mevalonate pathway of cholesterol synthesis. Breast Cancer Res. Treat. 50, 83–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Campbell, M. J. et al. Breast cancer growth prevention by statins. Cancer Res. 66, 8707–8714 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Kubatka, P. et al. Immunohistochemical and histomorphological analysis of rat mammary tumors after simvastatin treatment. Neoplasma 59, 516–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, X. et al. BRCA1 overexpression sensitizes cancer cells to lovastatin via regulation of cyclin D1-CDK4-p21WAF1/CIP1 pathway: analyses using a breast cancer cell line and tumoral xenograft model. Int. J. Oncol. 33, 555–563 (2008).

    CAS  PubMed  Google Scholar 

  21. Hawk, M. A., Cesen, K. T., Siglin, J. C., Stoner, G. D. & Ruch, R. J. Inhibition of lung tumor cell growth in vitro and mouse lung tumor formation by lovastatin. Cancer Lett. 109, 217–222 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Swamy, M. V. et al. Chemoprevention of familial adenomatous polyposis by low doses of atorvastatin and celecoxib given individually and in combination to APCM in mice. Cancer Res. 66, 7370–7377 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Suh, N. et al. Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the p65/β-catenin/cyclin D1 signaling pathway in rats. Cancer Prev. Res. (Phila.) 4, 1895–1902 (2011).

    Article  CAS  Google Scholar 

  24. Cho, S. J. et al. Simvastatin induces apoptosis in human colon cancer cells and in tumor xenografts, and attenuates colitis-associated colon cancer in mice. Int. J. Cancer 123, 951–957 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Kodach, L. L. et al. The effect of statins in colorectal cancer is mediated through the bone morphogenetic protein pathway. Gastroenterology 133, 1272–1281 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Mohammed, A. et al. Atorvastatin delays progression of pancreatic lesions to carcinoma by regulating PI3/AKT signaling in p48Cre/+ LSL-KrasG12D/+ mice. Int. J. Cancer 131, 1951–1962 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sumi, S. et al. Inhibition of pancreatic adenocarcinoma cell growth by lovastatin. Gastroenterology 103, 982–989 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Gbelcová, H. et al. Differences in antitumor effects of various statins on human pancreatic cancer. Int. J. Cancer 122, 1214–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Björkhem-Bergman, L., Acimovic, J., Torndal, U. B., Parini, P. & Eriksson, L. C. Lovastatin prevents carcinogenesis in a rat model for liver cancer. Effects of ubiquinone supplementation. Anticancer Res. 30, 1105–1112 (2010).

    PubMed  Google Scholar 

  30. Acimovic, J., Lövgren-Sandblom, A., Eriksson, L. C. & Björkhem-Bergman, L. The anti-carcinogenic effect of statins in a rat model correlates with levels and synthesis of ubiquinone. Biochem. Biophys. Res. Commun. 425, 348–352 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Taras, D. et al. Pravastatin reduces lung metastasis of rat hepatocellular carcinoma via a coordinated decrease of MMP expression and activity. J. Hepatol. 46, 69–76 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Cao, Z. et al. MYC phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by HMG-CoA reductase. Cancer Res. 71, 2286–2297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsuura, M. et al. Statin-mediated reduction of osteopontin expression induces apoptosis and cell growth arrest in ovarian clear cell carcinoma. Oncol. Rep. 25, 41–47 (2011).

    PubMed  Google Scholar 

  34. Kochuparambil, S. T., Al-Husein, B., Goc, A., Soliman, S. & Somanath, P. R. Anticancer efficacy of simvastatin on prostate cancer cells and tumor xenografts is associated with inhibition of Akt and reduced prostate-specific antigen expression. J. Pharmacol. Exp. Ther. 336, 496–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Takwi, A. A. et al. A statin-regulated microRNA represses human c-Myc expression and function. EMBO Mol. Med. 4, 896–909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kidera, Y. et al. Reduction of lung metastasis, cell invasion, and adhesion in mouse melanoma by statin-induced blockade of the Rho/Rho-associated coiled-coil-containing protein kinase pathway. J. Exp. Clin. Cancer Res. 29, 127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. [No authors listed] Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N. Engl. J. Med. 339, 1349–1357 (1998).

  38. Shepherd, J. et al. PROspective Study of Pravastatin in the Elderly at Risk. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360, 1623–1630 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Bjerre, L. M. & LeLorier, J. Do statins cause cancer? A meta-analysis of large randomized clinical trials. Am. J. Med. 110, 716–723 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Jacobs, E. J., Newton, C. C., Thun, M. J. & Gapstur, S. M. Long-term use of cholesterol-lowering drugs and cancer incidence in a large United States cohort. Cancer Res. 71, 1763–1771 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Friis, S. et al. Cancer risk among statin users: a population-based cohort study. Int. J. Cancer 114, 643–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Farwell, W. R. et al. The association between statins and cancer incidence in a veterans population. J. Natl Cancer Inst. 100, 134–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Haukka, J. et al. Incidence of cancer and statin usage--record linkage study. Int. J. Cancer 126, 279–284 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Fröhlich, G. M. et al. Statins and the risk of cancer after heart transplantation. Circulation 126, 440–447 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Nielsen, S. F., Nordestgaard, B. G. & Bojesen, S. E. Statin use and reduced cancer-related mortality. N. Engl. J. Med. 367, 1792–1802 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Blais, L., Desgagné, A. & LeLorier, J. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and the risk of cancer: a nested case-control study. Arch. Intern. Med. 160, 2363–2368 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Graaf, M. R., Beiderbeck, A. B., Egberts, A. C., Richel, D. J. & Guchelaar, H. J. The risk of cancer in users of statins. J. Clin. Oncol. 22, 2388–2394 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Cauley, J. A. et al. Lipid-lowering drug use and breast cancer in older women: a prospective study. J. Womens Health (Larchmt) 12, 749–756 (2003).

    Article  Google Scholar 

  49. Cauley, J. A. et al. Statin use and breast cancer: prospective results from the Women's Health Initiative. J. Natl Cancer Inst. 98, 700–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Kwan, M. L., Habel, L. A., Flick, E. D., Quesenberry, C. P. & Caan, B. Post-diagnosis statin use and breast cancer recurrence in a prospective cohort study of early stage breast cancer survivors. Breast Cancer Res. Treat. 109, 573–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Ahern, T. P. et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J. Natl Cancer Inst. 103, 1461–1468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boudreau, D. M. et al. The association between 3-hydroxy-3-methylglutaryl conenzyme A inhibitor use and breast carcinoma risk among postmenopausal women: a case-control study. Cancer 100, 2308–2316 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, J. E. et al. Statin use and colorectal cancer risk according to molecular subtypes in two large prospective cohort studies. Cancer Prev. Res. (Phila.) 4, 1808–1815 (2011).

    Article  CAS  Google Scholar 

  54. Simon, M. S. et al. Prospective analysis of association between use of statins or other lipid-lowering agents and colorectal cancer risk. Ann. Epidemiol. 22, 17–27 (2012).

    Article  PubMed  Google Scholar 

  55. Poynter, J. N. et al. Statins and the risk of colorectal cancer. N. Engl. J. Med. 352, 2184–2192 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Samadder, N. J. et al. Risk of colorectal cancer in self-reported inflammatory bowel disease and modification of risk by statin and NSAID use. Cancer 117, 1640–1648 (2011).

    Article  PubMed  Google Scholar 

  57. Vinogradova, Y., Hippisley-Cox, J., Coupland, C. & Logan, R. F. Risk of colorectal cancer in patients prescribed statins, nonsteroidal anti-inflammatory drugs, and cyclooxygenase-2 inhibitors: nested case-control study. Gastroenterology 133, 393–402 (2007).

    Article  PubMed  Google Scholar 

  58. Hoffmeister, M., Chang-Claude, J. & Brenner, H. Individual and joint use of statins and low-dose aspirin and risk of colorectal cancer: a population-based case-control study. Int. J. Cancer 121, 1325–1330 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Hachem, C., Morgan, R., Johnson, M., Kuebeler, M. & El-Serag, H. Statins and the risk of colorectal carcinoma: a nested case-control study in veterans with diabetes. Am. J. Gastroenterol. 104, 1241–1248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robertson, D. J. et al. Neither long-term statin use nor atherosclerotic disease is associated with risk of colorectal cancer. Clin. Gastroenterol. Hepatol. 8, 1056–1061 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Broughton, T., Sington, J. & Beales, I. L. Statin use is associated with a reduced incidence of colorectal cancer: a colonoscopy-controlled case-control study. BMC Gastroenterol. 12, 36 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lakha, F. et al. Statin use and association with colorectal cancer survival and risk: case control study with prescription data linkage. BMC Cancer 12, 487 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Broughton, T., Sington, J. & Beales, I. L. Statin use is associated with a reduced incidence of colorectal adenomatous polyps. Int. J. Colorectal Dis. 28, 469–476 (2013).

    Article  PubMed  Google Scholar 

  64. Kawata, S. et al. Effect of pravastatin on survival in patients with advanced hepatocellular carcinoma. A randomized controlled trial. Br. J. Cancer 84, 886–891 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kastelein, F. et al. Nonsteroidal anti-inflammatory drugs and statins have chemopreventative effects in patients with Barrett's esophagus. Gastroenterology 141, 2000–2008 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Kantor, E. D., Onstad, L., Blount, P. L., Reid, B. J. & Vaughan, T. L. Use of statin medications and risk of esophageal adenocarcinoma in persons with Barrett's esophagus. Cancer Epidemiol. Biomarkers Prev. 21, 456–461 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, W., Choueiri, T. K. & Cho, E. Statin use and the risk of renal cell carcinoma in 2 prospective US cohorts. Cancer 118, 797–803 (2012).

    Article  PubMed  Google Scholar 

  68. Tsan, Y. T., Lee, C. H., Wang, J. D. & Chen, P. C. Statins and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. J. Clin. Oncol. 30, 623–630 (2012).

    Article  PubMed  Google Scholar 

  69. Khurana, V., Bejjanki, H. R., Caldito, G. & Owens, M. W. Statins reduce the risk of lung cancer in humans: a large case-control study of US veterans. Chest 131, 1282–1288 (2007).

    Article  PubMed  Google Scholar 

  70. Nguyen, D. M., Richardson, P. & El-Serag, H. B. Medications (NSAIDs, statins, proton pump inhibitors) and the risk of esophageal adenocarcinoma in patients with Barrett's esophagus. Gastroenterology 138, 2260–2266 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Beales, I. L., Vardi, I., Dearman, L. & Broughton, T. Statin use is associated with a reduction in the incidence of esophageal adenocarcinoma: a case control study. Dis. Esophagus http://dx.doi.org/10.1111/j.1442–2050201201412x.

  72. Chiu, H. F., Ho, S. C., Chang, C. C., Wu, T. N. & Yang, C. Y. Statins are associated with a reduced risk of gastric cancer: a population-based case-control study. Am. J. Gastroenterol. 106, 2098–2103 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Khurana, V., Sheth, A., Caldito, G. & Barkin, J. S. Statins reduce the risk of pancreatic cancer in humans: a case-control study of half a million veterans. Pancreas 34, 260–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. El-Serag, H. B., Johnson, M. L., Hachem, C. & Morgana, R. O. Statins are associated with a reduced risk of hepatocellular carcinoma in a large cohort of patients with diabetes. Gastroenterology 136, 1601–1608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chiu, H. F., Ho, S. C., Chen, C. C. & Yang, C. Y. Statin use and the risk of liver cancer: a population-based case–control study. Am. J. Gastroenterol. 106, 894–898 (2011).

    Article  PubMed  Google Scholar 

  76. Kaye, J. A. & Jick, H. Statin use and cancer risk in the General Practice Research Database. Br. J. Cancer 90, 635–637 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Setoguchi, S., Glynn, R. J., Avorn, J., Mogun, H. & Schneeweiss, S. Statins and the risk of lung, breast, and colorectal cancer in the elderly. Circulation 115, 27–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Smeeth, L., Douglas, I., Hall, A. J., Hubbard, R. & Evans, S. Effect of statins on a wide range of health outcomes: a cohort study validated by comparison with randomized trials. Br. J. Clin. Pharmacol. 67, 99–109 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Friedman, G. D. et al. Screening statins for possible carcinogenic risk: up to 9 years of follow-up of 361,859 recipients. Pharmacoepidemiol. Drug Saf. 17, 27–36 (2008).

    Article  PubMed  Google Scholar 

  80. Marelli, C. et al. Statins and risk of cancer: a retrospective cohort analysis of 45,857 matched pairs from an electronic medical records database of 11 million adult Americans. J. Am. Coll. Cardiol. 58, 530–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Vinogradova, Y., Coupland, C. & Hippisley-Cox, J. Exposure to statins and risk of common cancers: a series of nested case-control studies. BMC Cancer 11, 409 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Boudreau, D. M., Yu, O., Miglioretti, D. L., Buist, D. S., Heckbert, S. R. & Daling, J. R. Statin use and breast cancer risk in a large population-based setting. Cancer Epidemiol. Biomarkers Prev. 16, 416–421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaye, J. A., Meier, C. R., Walker, A. M. & Jick, H. Statin use, hyperlipidaemia, and the risk of breast cancer. Br. J. Cancer 86, 1436–1439 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Woditschka, S., Habel, L. A., Udaltsova, N., Friedman, G. D. & Sieh, W. Lipophilic statin use and risk of breast cancer subtypes. Cancer Epidemiol. Biomarkers Prev. 19, 2479–2487 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jacobs, E. J. et al. Cholesterol-lowering drugs and colorectal cancer incidence in a large United States cohort. J. Natl Cancer Inst. 98, 69–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Ng, K. et al. Relationship between statin use and colon cancer recurrence and survival: results from CALGB 89803. J. Natl Cancer Inst. 103, 1540–1551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bertagnolli, M. M. et al. Statin use and colorectal adenoma risk: results from the adenoma prevention with celecoxib trial. Cancer Prev. Res. (Phila.) 3, 588–596 (2010).

    Article  CAS  Google Scholar 

  88. Coogan, P. F., Smith, J. & Rosenberg, L. Statin use and risk of colorectal cancer. J. Natl Cancer Inst. 99, 32–40 (2007).

    Article  PubMed  Google Scholar 

  89. Yang, Y. X. et al. Chronic statin therapy and the risk of colorectal cancer. Pharmacoepidemiol. Drug Saf. 17, 869–876 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Cheng, M. H. et al. Statin use and the risk of colorectal cancer: a population-based case-control study. World J. Gastroenterol. 17, 5197–5202 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bradley, M. C., Hughes, C. M., Cantwell, M. M. & Murray, L. J. Statins and pancreatic cancer risk: a nested case-control study. Cancer Causes Control 21, 2093–2100 (2010).

    Article  PubMed  Google Scholar 

  92. Yu, O., Boudreau, D. M., Buist, D. S. & Miglioretti, D. L. Statin use and female reproductive organ cancer risk in a large population-based setting. Cancer Causes Control 20, 609–616 (2009).

    Article  PubMed  Google Scholar 

  93. Sacks, F. M. et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N. Engl. J. Med. 335, 1001–1009 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA 288, 2998–3007 (2002).

  95. Pedersen, T. R. et al. Follow-up study of patients randomized in the Scandinavian simvastatin survival study (4S) of cholesterol lowering. Am. J. Cardiol. 86, 257–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Strandberg, T. E. et al. Mortality and incidence of cancer during 10-year follow-up of the Scandinavian Simvastatin Survival Study (4S). Lancet 364, 771–777 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Bulbulia, R. et al. Effects on 11-year mortality and morbidity of lowering LDL cholesterol with simvastatin for about 5 years in 20,536 high-risk individuals: a randomised controlled trial. Lancet 378, 2013–2020 (2011).

    Article  CAS  Google Scholar 

  98. Suissa, S., Dell'aniello, S., Vahey, S. & Renoux, C. Time-window bias in case-control studies: statins and lung cancer. Epidemiology 22, 228–231 (2011).

    Article  PubMed  Google Scholar 

  99. Notarnicola, M. et al. Up-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in left-sided human colon cancer. Anticancer Res. 24, 3837–3842 (2004).

    CAS  PubMed  Google Scholar 

  100. Sharad, S. et al. Prostate cancer gene expression signature of patients with high body mass index. Prostate Cancer Prostatic Dis. 14, 22–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Higgins, M. J. et al. A short-term biomarker modulation study of simvastatin in women at increased risk of a new breast cancer. Breast Cancer Res. Treat. 131, 915–924 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Dale, K. M., Coleman, C. I., Henyan, N. N., Kluger, J. & White, C. M. Statins and cancer risk: a meta-analysis. JAMA 295, 74–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Kuoppala, J., Lamminpää, A. & Pukkala, E. Statins and cancer: A systematic review and meta-analysis. Eur. J. Cancer 44, 2122–2132 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Taylor, M. L., Wells, B. J. & Smolak, M. J. Statins and cancer: a meta-analysis of case-control studies. Eur. J. Cancer Prev. 17, 259–268 (2008).

    Article  PubMed  Google Scholar 

  105. Bonovas, S., Filioussi, K., Flordellis, C. S. & Sitaras, N. M. Statins and the risk of colorectal cancer: a meta-analysis of 18 studies involving more than 1.5 million patients. J. Clin. Oncol. 25, 3462–3468 (2007).

    Article  PubMed  Google Scholar 

  106. Cui, X. et al. Statin use and risk of pancreatic cancer: a meta-analysis. Cancer Causes Control 23, 1099–1111 (2012).

    Article  PubMed  Google Scholar 

  107. Singh, S., Singh, P. P., Singh, A. G., Murad, M. H. & Sanchez, W. Statins are associated with a reduced risk of hepatocellular cancer: a systematic review and meta-analysis. Gastroenterology 144, 323–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  109. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  110. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  111. Reiner, Z. Statins in the primary prevention of cardiovascular disease. Nat. Rev. Cardiol. 10, 453–464 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Lipkin, S. M. et al. Genetic variation in 3-hydroxy-3-methylglutaryl CoA reductase modifies the chemopreventive activity of statins for colorectal cancer. Cancer Prev. Res. (Phila.) 3, 597–603 (2010).

    Article  CAS  Google Scholar 

  113. Bailey, K. M. et al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ. Cardiovasc. Genet. 3, 276–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Brautbar, A. et al. Variants in the APOA5 gene region and the response to combination therapy with statins and fenofibric acid in a randomized clinical trial of individuals with mixed dyslipidemia. Atherosclerosis 219, 737–742 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Peters, B. J. et al. Pharmacogenetic interactions between ABCB1 and SLCO1B1 tagging SNPs and the effectiveness of statins in the prevention of myocardial infarction. Pharmacogenomics 11, 1065–1076 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Chasman, D. I. et al. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ. Cardiovasc. Genet. 5, 257–264 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Power, D. G., Gloglowski, E. & Lipkin, S. M. Clinical genetics of hereditary colorectal cancer. Hematol. Oncol. Clin. North Am. 24, 837–859 (2010).

    Article  PubMed  Google Scholar 

  119. Rizza, R. A. & Vella, A. in Pharmacology and Therapeutics: principles to practice Ch. 37 (eds Waldman, S. A. & Terzic, A.) 557–570 (Elsevier, Amsterdam, 2009).

    Book  Google Scholar 

  120. Xu, J. et al. Insulin enhances growth hormone induction of the MEK/ERK signaling pathway. J. Biol. Chem. 281, 982–992 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Bennett, W. L., Keeton, A. B., Ji, S., Xu, J. & Messina, J. L. Insulin regulation of growth hormone receptor gene expression: involvement of both the PI-3 kinase and MEK/ERK signaling pathways. Endocrine 32, 219–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Melander, O. et al. Plasma proneurotensin and incidence of diabetes, cardiovascular disease, breast cancer, and mortality. JAMA 308, 1469–1475 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hemminki, A. et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391, 184–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Zakikhani, M., Dowling, R., Fantus, I. G., Sonenberg, N. & Pollak, M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269–10273 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Zakikhani, M., Dowling, R. J., Sonenberg, N. & Pollak, M. N. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev. Res. (Phila.) 1, 369–375 (2008).

    Article  CAS  Google Scholar 

  128. Ben Sahra, I. et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 71, 4366–4372 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Deng, X. S. et al. Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle 11, 367–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Oliveras-Ferraros, C., Vazquez-Martin, A. & Menendez, J. A. Genome-wide inhibitory impact of the AMPK activator metformin on [kinesins, tubulins, histones, auroras and polo-like kinases] M-phase cell cycle genes in human breast cancer cells. Cell Cycle 8, 1633–1636 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Cufí, S. et al. Metformin lowers the threshold for stress-induced senescence: a role for the microRNA-200 family and miR-205. Cell Cycle 11, 1235–1246 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Zhuang, Y. & Miskimins, W. K. Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol. Cancer Res. 9, 603–615 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hirsch, H. A., Iliopoulos, D., Tsichlis, P. N. & Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69, 7507–7511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Oliveras-Ferraros, C. et al. Micro(mi)RNA expression profile of breast cancer epithelial cells treated with the anti-diabetic drug metformin: induction of the tumor suppressor miRNA let-7a and suppression of the TGFβ-induced oncomiR miRNA-181a. Cell Cycle 10, 1144–1151 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Memmott, R. M. et al. Metformin prevents tobacco carcinogen--induced lung tumorigenesis. Cancer Prev. Res. (Phila.) 3, 1066–1076 (2010).

    Article  CAS  Google Scholar 

  137. Algire, C., Zakikhani, M., Blouin, M. J., Shuai, J. H. & Pollak, M. Metformin attenuates the stimulatory effect of a high-energy diet on in vivo LLC1 carcinoma growth. Endocr. Relat. Cancer 15, 833–839 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Schneider, M. B. et al. Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology 120, 1263–1270 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Blandino, G. et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat. Commun. 3, 865 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Rattan, R., Graham, R. P., Maguire, J. L., Giri, S. & Shridhar, V. Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia 13, 483–491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shank, J. J. et al. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol. Oncol. 127, 390–397 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Phoenix, K. N., Vumbaca, F. & Claffey, K. P. Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERα negative MDA-MB-435 breast cancer model. Breast Cancer Res. Treat. 113, 101–111 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Martin, M. J., Hayward, R., Viros, A. & Marais, R. Metformin accelerates the growth of BRAFV600E-driven melanoma by upregulating VEGF-A. Cancer Discov. 2, 344–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Larsson, S. C., Orsini, N. & Wolk, A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J. Natl Cancer Inst. 97, 1679–1687 (2005).

    Article  PubMed  Google Scholar 

  145. Michels, K. B. et al. Type 2 diabetes and subsequent incidence of breast cancer in the Nurses' Health Study. Diabetes Care 26, 1752–1758 (2003).

    Article  PubMed  Google Scholar 

  146. Redaniel, M. T., Jeffreys, M., May, M. T., Ben-Shlomo, Y. & Martin, R. M. Associations of type 2 diabetes and diabetes treatment with breast cancer risk and mortality: a population-based cohort study among British women. Cancer Causes Control 23, 1785–1795 (2012).

    Article  PubMed  Google Scholar 

  147. Boyle, P. et al. Diabetes and breast cancer risk: a meta-analysis. Br. J. Cancer 107, 1608–1617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Luo, J. et al. Diabetes and lung cancer among postmenopausal women. Diabetes Care 35, 1485–1491 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Newton, C. C., Gapstur, S. M., Campbell, P. T. & Jacobs, E. J. Type 2 diabetes mellitus, insulin use, and risk of bladder cancer in a large cohort study. Int. J. Cancer 132, 2186–2191 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Kasper, J. S. & Giovannucci, E. A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 15, 2056–2062 (2006).

    Article  PubMed  Google Scholar 

  151. Johnson, J. A. et al. Diabetes and cancer (1): evaluating the temporal relationship between type 2 diabetes and cancer incidence. Diabetologia 55, 1607–1618 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Decensi, A. et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev. Res. (Phila.) 3, 1451–1461 (2010).

    Article  CAS  Google Scholar 

  153. Noto, H., Goto, A., Tsujimoto, T. & Noda, M. Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS ONE 7, e33411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang, Z. J. et al. Reduced risk of colorectal cancer with metformin therapy in patients with type 2 diabetes: a meta-analysis. Diabetes Care 34, 2323–2328 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Col, N. F., Ochs, L., Springmann, V., Aragaki, A. K. & Chlebowski, R. T. Metformin and breast cancer risk: a meta-analysis and critical literature review. Breast Cancer Res. Treat. 135, 639–646 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Suissa, S. & Azoulay, L. Metformin and the risk of cancer: time-related biases in observational studies. Diabetes Care 35, 2665–2673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Home, P. D. et al. Experience of malignancies with oral glucose-lowering drugs in the randomised controlled ADOPT (A Diabetes Outcome Progression Trial) and RECORD (Rosiglitazone Evaluated for Cardiovascular Outcomes and Regulation of Glycaemia in Diabetes) clinical trials. Diabetologia 53, 1838–1845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bonanni, B. et al. Dual effect of metformin on breast cancer proliferation in a randomized presurgical trial. J. Clin. Oncol. 30, 2593–2600 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Niraula, S. et al. Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res. Treat. 135, 821–830 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Hadad, S. et al. Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res. Treat. 128, 783–794 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Hosono, K. et al. Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev. Res. (Phila.) 3, 1077–1083 (2010).

    Article  CAS  Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  163. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  164. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  165. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  166. Higurashi, T. et al. Metformin efficacy and safety for colorectal polyps: a double-blind randomized controlled trial. BMC Cancer 12, 118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang, D. S. et al. Involvement of organic cation transporter 1 in the hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther. 302, 510–515 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest. 117, 1422–1431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhou, K. et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat. Genet. 43, 117–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Clarke, L. C. & Khosla, S. in Pharmacology and Therapeutics: principles to practice Ch. 39 (eds Waldman, S. A. & Terzic, A.) 587–610 (Elsevier, Amsterdam, 2009).

    Book  Google Scholar 

  171. Russell, R. G. Bisphosphonates: from bench to bedside. Ann. N. Y. Acad. Sci. 1068, 367–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Tang, X. et al. Bisphosphonates suppress insulin-like growth factor 1-induced angiogenesis via the HIF-1α/VEGF signaling pathways in human breast cancer cells. Int. J. Cancer 126, 90–103 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Senaratne, S. G., Mansi, J. L. & Colston, K. W. The bisphosphonate zoledronic acid impairs Ras membrane [correction of impairs membrane] localisation and induces cytochrome c release in breast cancer cells. Br. J. Cancer 86, 1479–1486 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hiraga, T., Williams, P. J., Ueda, A., Tamura, D. & Yoneda, T. Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clin. Cancer Res. 10, 4559–4567 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Senaratne, S. G., Pirianov, G., Mansi, J. L., Arnett, T. R. & Colston, K. W. Bisphosphonates induce apoptosis in human breast cancer cell lines. Br. J. Cancer 82, 1459–1468 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Li, Y. Y. et al. Zoledronic acid is unable to induce apoptosis, but slows tumor growth and prolongs survival for non-small-cell lung cancers. Lung Cancer 59, 180–191 (2008).

    Article  PubMed  Google Scholar 

  177. Brown, H. K., Ottewell, P. D., Coleman, R. E. & Holen, I. The kinetochore protein Cenp-F is a potential novel target for zoledronic acid in breast cancer cells. J. Cell. Mol. Med. 15, 501–513 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Coscia, M. et al. Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell. Mol. Med. 14, 2803–2815 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Melani, C., Sangaletti, S., Barazzetta, F. M., Werb, Z. & Colombo, M. P. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 67, 11438–11446 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Daubiné, F., Le Gall, C., Gasser, J., Green, J. & Clézardin, P. Antitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis. J. Natl Cancer Inst. 99, 322–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Hashimoto, K. et al. Alendronate suppresses tumor angiogenesis by inhibiting Rho activation of endothelial cells. Biochem. Biophys. Res. Commun. 354, 478–484 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Santini, D. et al. Repeated intermittent low-dose therapy with zoledronic acid induces an early, sustained, and long-lasting decrease of peripheral vascular endothelial growth factor levels in cancer patients. Clin. Cancer Res. 13 (15 Pt 1), 4482–4486 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Santini, D. et al. In vivo effects of zoledronic acid on peripheral gammadelta T lymphocytes in early breast cancer patients. Cancer Immunol. Immunother. 58, 31–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Diel, I. J. et al. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N. Engl. J. Med. 339, 357–363 (1998).

    Article  CAS  PubMed  Google Scholar 

  185. Powles, T. et al. Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J. Clin. Oncol. 20, 3219–3224 (2002).

    Article  CAS  PubMed  Google Scholar 

  186. Saarto, T., Vehmanen, L., Virkkunen, P. & Blomqvist, C. Ten-year follow-up of a randomized controlled trial of adjuvant clodronate treatment in node-positive breast cancer patients. Acta Oncol. 43, 650–656 (2004).

    Article  CAS  PubMed  Google Scholar 

  187. Kristensen, B. et al. Bisphosphonate treatment in primary breast cancer: results from a randomised comparison of oral pamidronate versus no pamidronate in patients with primary breast cancer. Acta Oncol. 47, 740–746 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Gnant, M. et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N. Engl. J. Med. 360, 679–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Gnant, M. et al. Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 62-month follow-up from the ABCSG-12 randomised trial. Lancet Oncol. 12, 631–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Aft, R. et al. Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial. Lancet Oncol. 11, 421–428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Coleman, R. E. et al. Breast-cancer adjuvant therapy with zoledronic acid. N. Engl. J. Med. 365, 1396–1405 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Coleman, R. E. et al. The effects of adding zoledronic acid to neoadjuvant chemotherapy on tumour response: exploratory evidence for direct anti-tumour activity in breast cancer. Br. J. Cancer 102, 1099–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Aft, R. L., Naughton, M., Trinkaus, K. & Weilbaecher, K. Effect of (Neo)adjuvant zoledronic acid on disease-free and overall survival in clinical stage II/III breast cancer. Br. J. Cancer 107, 7–11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Coleman, R. et al. Zoledronic acid (zoledronate) for postmenopausal women with early breast cancer receiving adjuvant letrozole (ZO-FAST study): final 60-month results. Ann. Oncol. 24, 398–405 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Paterson, A. H. et al. Oral clodronate for adjuvant treatment of operable breast cancer (National Surgical Adjuvant Breast and Bowel Project protocol B-34): a multicentre, placebo-controlled, randomised trial. Lancet Oncol. 13, 734–742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Newcomb, P. A., Trentham-Dietz, A. & Hampton, J. M. Bisphosphonates for osteoporosis treatment are associated with reduced breast cancer risk. Br. J. Cancer 102, 799–802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chlebowski, R. T. et al. Oral bisphosphonate use and breast cancer incidence in postmenopausal women. J. Clin. Oncol. 28, 3582–3590 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Rennert, G., Pinchev, M. & Rennert, H. S. Use of bisphosphonates and risk of postmenopausal breast cancer. J. Clin. Oncol. 28, 3577–3581 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Monsees, G. M., Malone, K. E., Tang, M. T., Newcomb, P. A. & Li, C. I. Bisphosphonate use after estrogen receptor-positive breast cancer and risk of contralateral breast cancer. J. Natl Cancer Inst. 103, 1752–1760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rennert, G., Pinchev, M., Rennert, H. S. & Gruber, S. B. Use of bisphosphonates and reduced risk of colorectal cancer. J. Clin. Oncol. 29, 1146–1150 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Pazianas, M., Abrahamsen, B., Eiken, P. A., Eastell, R. & Russell, R. G. Reduced colon cancer incidence and mortality in postmenopausal women treated with an oral bisphosphonate-Danish National Register Based Cohort Study. Osteoporos. Int. 23, 2693–2701 (2012).

    Article  CAS  PubMed  Google Scholar 

  202. Singh, H., Nugent, Z., Demers, A., Mahmud, S. & Bernstein, C. Exposure to bisphosphonates and risk of colorectal cancer: a population-based nested case-control study. Cancer 118, 1236–1243 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Khalili, H., Huang, E. S., Ogino, S., Fuchs, C. S. & Chan, A. T. A prospective study of bisphosphonate use and risk of colorectal cancer. J. Clin. Oncol. 30, 3229–3233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Passarelli, M. N. et al. Oral bisphosphonate use and colorectal cancer incidence in the Women's Health Initiative. J. Bone Miner. Res. http://dx.doi.org/10.1002/jbmr.1930.

  205. Mason, M. D. et al. Oral sodium clodronate for nonmetastatic prostate cancer--results of a randomized double-blind placebo-controlled trial: Medical Research Council PR04 (ISRCTN61384873). J. Natl Cancer Inst. 99, 765–776 (2007).

    Article  CAS  PubMed  Google Scholar 

  206. Green, J. et al. Oral bisphosphonates and risk of cancer of oesophagus, stomach, and colorectum: case-control analysis within a UK primary care cohort. BMJ 341, c4444 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Cardwell, C. R., Abnet, C. C., Cantwell, M. M. & Murray, L. J. Exposure to oral bisphosphonates and risk of esophageal cancer. JAMA 304, 657–663 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Chiang, C. H. et al. Oral alendronate use and risk of cancer in postmenopausal women with osteoporosis: A nationwide study. J. Bone Miner. Res. 27, 1951–1958 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Cardwell, C. R. et al. Exposure to oral bisphosphonates and risk of cancer. Int. J. Cancer 131, E717–E725 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Liu, Y. et al. Bisphosphonate use and the risk of breast cancer: a meta-analysis of published literature. Clin. Breast Cancer 12, 276–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Thosani, N. et al. Reduced risk of colorectal cancer with use of oral bisphosphonates: a systematic review and meta-analysis. J. Clin. Oncol. 31, 623–630 (2013).

    Article  CAS  PubMed  Google Scholar 

  212. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  213. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  214. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  215. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  216. Marini, F. & Brandi, M. L. Pharmacogenetics of osteoporosis. F1000 Biol. Rep. 2, 63 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Libby, G. et al. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32, 1620–1625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Currie, C. J., Poole, C. D. & Gale, E. A. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 52, 1766–1777 (2009).

    Article  CAS  PubMed  Google Scholar 

  220. Chlebowski, R. T. et al. Diabetes, metformin, and breast cancer in postmenopausal women. J. Clin. Oncol. 30, 2844–2852 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Jiralerspong, S. et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin. Oncol. 27, 3297–3302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Bodmer, M., Meier, C., Krähenbühl, S., Jick, S. S. & Meier, C. R. Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care 33, 1304–1308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Bosco, J. L., Antonsen, S., Sørensen, H. T., Pedersen, L. & Lash, T. L. Metformin and incident breast cancer among diabetic women: a population-based case-control study in Denmark. Cancer Epidemiol. Biomarkers Prev. 20, 101–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  224. Bodmer, M., Becker, C., Meier, C., Jick, S. S. & Meier, C. R. Use of metformin is not associated with a decreased risk of colorectal cancer: a case-control analysis. Cancer Epidemiol. Biomarkers Prev. 21, 280–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Bodmer, M., Becker, C., Jick, S. S. & Meier, C. R. Metformin does not alter the risk of lung cancer: A case-control analysis. Lung Cancer 78, 133–137 (2012).

    Article  PubMed  Google Scholar 

  226. Smiechowski, B. B., Azoulay, L., Yin, H., Pollak, M. N. & Suissa, S. The use of metformin and the incidence of lung cancer in patients with type 2 diabetes. Diabetes Care 36, 124–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  227. Li, D., Yeung, S. C., Hassan, M. M., Konopleva, M. & Abbruzzese, J. L. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137, 482–488 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Bodmer, M., Becker, C., Meier, C., Jick, S. S. & Meier, C. R. Use of antidiabetic agents and the risk of pancreatic cancer: a case-control analysis. Am. J. Gastroenterol. 107, 620–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  229. Hassan, M. M. et al. Association of diabetes duration and diabetes treatment with the risk of epatocellular carcinoma. Cancer 116, 1938–1946 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Diel, I. J. et al. Adjuvant oral clodronate improves the overall survival of primary breast cancer patients with micrometastases to the bone marrow: a long-term follow-up. Ann. Oncol. 19, 2007–2011 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Newcomb, P. A., Trentham-Dietz, A. & Hampton, J. M. Bisphosphonates for osteoporosis treatment are associated with reduced breast cancer risk. Br. J. Cancer 102, 799–802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for article, made a substantial contribution to discussion of the content, and wrote and edited the manuscript prior to submission.

Corresponding author

Correspondence to Gad Rennert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Statins: clinical studies mostly evaluating cancer as a secondary outcome of interest beyond cardiovascular events, and registry-based studies (PDF 3633 kb)

Supplementary Table 2

In vitro mechanistic studies of possible modes of action of statins (PDF 1438 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gronich, N., Rennert, G. Beyond aspirin—cancer prevention with statins, metformin and bisphosphonates. Nat Rev Clin Oncol 10, 625–642 (2013). https://doi.org/10.1038/nrclinonc.2013.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.169

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer