Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting JNK for therapeutic benefit: from junk to gold?

Key Points

  • The c-Jun NH2-terminal kinases (JNKs) phosphorylate and activate members of the activator protein-1 (AP-1) transcription factor family and other cellular factors implicated in regulating altered gene expression, cellular survival and proliferation in response to cytokines and growth factors, to noxious stimuli and to oncogenic transformation. Because these events are commonly associated with the pathogenesis of a number of human diseases, the potential of JNK inhibitors as therapeutics has attracted considerable interest.

  • Activated immune cells express many genes encoding inflammatory molecules, including cytokines, growth factors, cell surface receptors, cell adhesion molecules and degradative enzymes. Many of these genes are regulated by the JNK pathway, through activation of the transcription factors AP-1 and ATF-2. JNK's represent attractive targets for immunomodulatory drug development.

  • Neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, and stroke, share synaptic loss, neuronal atrophy and death as pathological hallmarks. JNK plays an integral role in neuronal death and this pathway might be operative in various central nervous system disease states.

  • Obesity and type 2 diabetes are the most prevalent and serious of the metabolic diseases. Insulin resistance is closely associated with these syndromes, and is commonly seen in hypertension, and following infection and injury. Mice lacking JNK1 displayed decreased adiposity, significantly improved insulin sensitivity and enhanced insulin receptor signalling in the high-fat and ob/ob models, suggesting JNK as a target for preventing insulin resistance.

  • A substantial body of evidence suggests that JNK activation and c-Jun phosphorylation are required for transformation induced by Ras, an oncogene that is mutationally activated in almost 30% of human cancers. JNK also seems to play a significant role in tumour development, although in certain cases this role might be to promote or inhibit tumour development.

  • The combination of high-throughput screening, kinase-specific libraries and structure-based drug design has facilitated the discovery of selective JNK inhibitors. Determination of the X-ray structure of the members of the mitogen-activated protein kinase family, extracellular signal-regulated kinase, p38 and JNK3 has aided the design of potent yet selective inhibitors of the JNKs. These efforts have led to the patenting of a series of JNK inhibitors.

Abstract

The c-Jun NH2-terminal kinases (JNKs) phosphorylate and activate members of the activator protein-1 (AP-1) transcription factor family and other cellular factors implicated in regulating altered gene expression, cellular survival and proliferation in response to cytokines and growth factors, noxious stimuli and oncogenic transformation. Because these events are commonly associated with the pathogenesis of a number of human diseases, the potential of JNK inhibitors as therapeutics has attracted considerable interest. Here we discuss the evidence supporting the application of JNK inhibitors in inflammatory, vascular, neurodegenerative, metabolic and oncological diseases in humans, and describe the present status of drug discovery targeting JNK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural features of the JNK proteins.
Figure 2: Organization of the JNK signal transduction cascade.
Figure 3: Modular organization of JNK signalling complexes.
Figure 4: Inflammatory gene expression and JNKs.
Figure 5: Biological functions of JNK.
Figure 6: Inhibitors of JNKs reported in the patent literature.

Similar content being viewed by others

References

  1. Kyriakis, J. M. & Avruch, J. pp54 microtubule-associated protein 2 kinase. A novel serine/threonine protein kinase regulated by phosphorylation and stimulated by poly-L-lysine. J. Biol. Chem. 265, 17355–17363 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Hibi, M., Lin, A., Smeal, T., Minden, A. & Karin, M. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135–2148 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Adler, V., Polotskaya, A., Wagner, F. & Kraft, A. S. Affinity-purified c-Jun amino-terminal protein kinase requires serine/threonine phosphorylation for activity. J. Biol. Chem. 267, 17001–17005 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Derijard, B. et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Kyriakis, J. M. et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000). A concise overview of the components of the three mitogen-activated protein kinase signalling pathways and their therapeutic potential.

    Article  CAS  PubMed  Google Scholar 

  7. Gupta, S. et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760–2770 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ventura, J. J., Kennedy, N. J., Lamb, J. A., Flavell, R. A. & Davis, R. J. c-Jun NH2-terminal kinase is essential for the regulation of AP-1 by tumor necrosis factor. Mol. Cell Biol. 23, 2871–2882 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tournier, C. et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Lawler, S., Fleming, Y., Goedert, M. & Cohen, P. Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Curr. Biol. 8, 1387–1390 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Tournier, C. et al. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev. 15, 1419–1426 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Enslen, H. & Davis, R. J. Regulation of MAP kinases by docking domains. Biol. Cell 93, 5–14 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Morrison, D. & Davis, R. J. MAP kinase scaffold proteins in mammals. Annu. Rev. Dev. Cell Biol. (in the press).

  14. Harper, S. J. & LoGrasso, P. Inhibitors of the JNK signaling pathway. Drugs of the Future 26, 957–973 (2001). An excellent review of progress in the discovery of inhibitors of JNK signalling, including recent patent activity.

    Article  CAS  Google Scholar 

  15. Maroney, A. C. et al. CEP-1347 (KT7515), a synthetic inhibitor of the mixed lineage kinase family. J. Biol. Chem. 276, 25302–25308 (2001). A detailed description of an inhibitor of JNK signalling that functions upstream of the JNKs.

    Article  CAS  PubMed  Google Scholar 

  16. Manning, A. M. & Mercurio, F. Transcription inhibitors in inflammation. Exp. Opin. Invest. Drugs 6, 555–567 (1997).

    Article  CAS  Google Scholar 

  17. Swantek, J. L., Cobb, M. H. & Geppert, T. D. Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor-α (TNF-α) translation: glucocorticoids inhibit TNF-α translation by blocking JNK/SAPK. Mol. Cell. Biol. 17, 6274–6282 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ishizuka, T. et al. Mast cell tumor necrosis factor α production is regulated by MEK kinases. Proc. Natl Acad. Sci. USA 94, 6358–6363 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gum, R., Wang, H., Lengyel, E., Juarez, J. & Boyd, D. Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades. Oncogene 14, 1481–1493 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Han, Z. et al. Jun-N-terminal kinase in rheumatoid arthritis. J. Pharm. Exp. Therap. 291, 124–130 (1999).

    CAS  Google Scholar 

  21. Han, Z. et al. c-Jun N-terminal kinase is required for metalloproteinase (MMP) expression in synoviocytes and regulates bone destruction in adjuvant arthritis. J. Clin. Invest. 108, 73–81 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clancy, R. et al. Activation of stress-activated protein kinase in osteoarthritis cartilage: evidence for nitric oxide dependence. Osteoarthritis Cartilage 9, 294–299 (2002).

    Article  Google Scholar 

  23. Bennett, B. L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl Acad. Sci. USA 98, 13681–13686 (2001). The first detailed description of the pharmacologic profile of a selective JNK inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han, Z., Chang, L., Yamanishi, Y., Karin, M. & Firestein, G. S. Joint damage and inflammation in c-Jun N-terminal kinase 2 knockout mice with passive murine collagen-induced arthritis. Arthritis Rheum. 46, 818–823 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Eynott, P. R., Adcock, I. M. & Chung, P. The effects of selective c-Jun N-terminal kinase inhibition in a sensitized Brown Norway rat model of allergic asthma. Am. J. Respir. Crit. Care Med. 49, S102 (2001).

    Google Scholar 

  26. Sabapathy, K. et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 9, 116–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Rincon, M. et al. The JNK pathway regulates the in vivo deletion of immature CD4+CD8+ thymocytes. J. Exp. Med. 188, 1817–1830 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dong, C. et al. JNK is required for effector T-cell function but not for T-cell activation. Nature 405, 91–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science 282, 2092–2095 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, D. D. et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9, 575–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Arbour, N. et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 signaling pathways have divergent roles in CD8+ T cell-mediated antiviral immunity. J. Exp. Med. 195, 801–810 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Conze, D. et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have distinct roles in CD8+ T cell activation. J. Exp. Med. 195, 811–823 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Su, B. et al. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77, 727–736 (1994).

    Article  PubMed  Google Scholar 

  34. Li, W., Whaley, C. D., Mondino, A. & Mueller, D. L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science 271, 1272–1276 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Rincon, M., Flavell, R. A. & Davis, R. J. Signal transduction by MAP kinases in T lymphocytes. Oncogene 20, 2490–2497 (2001)

    Article  CAS  PubMed  Google Scholar 

  36. Kuan, C. Y. et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, D. D. et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865–870 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. & Greenberg, M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Le-Niculescu, H. et al. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol. Cell Biol. 19, 751–763 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bruckner, S. R. et al. JNK3 contributes to c-Jun activation and apoptosis but not oxidative stress in nerve growth factor-deprived sympathetic neurons. J. Neurochem. 78, 298–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Scheuner, D. et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med. 2, 864–870 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Morishima, Y. et al. β-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J. Neurosci. 21, 7551–7560 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, X. et al. Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease J. Neurochem. 76, 435–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Pei, J -J. et al. Localization of active forms of c-Jun kinase (JNK) and p38 kinase in Alzheimer's disease brains at different stages of neurofibrillary degeneration. J. Alzheimer's Dis. 3, 41–48 (2001).

    Article  CAS  Google Scholar 

  45. Reynolds, C. H., Utton, M. A., Gibb, G. M., Yates, A. & Anderton, B. H. Stress-activated protein kinase/c-Jun N-terminal kinase phosphorylates Tau protein. J. Neurochem. 68, 1736–1744 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Shoji, M. et al. JNK activation is associated with intracellular β-amyloid accumulation. Mol. Brain Res. 85, 221–233 (2001).

    Article  Google Scholar 

  47. Reynolds, C. H., Betts, J. C., Blackstock, W. P., Nebreda, A. R. & Anderton, B. H. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and p38, and glycogen synthase kinase-3β. J. Neurochem. 74, 1587–1595 (2001).

    Article  Google Scholar 

  48. Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12, 25–31 (1997).

    CAS  PubMed  Google Scholar 

  49. Xia, X. G. et al. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proc. Natl Acad. Sci. USA 98, 10433–10438 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mattson, M. P. Apoptosis in neurodegenerative disorders. Nature Rev. Mol. Cell Biol. 1, 120–129 (2000).

    Article  CAS  Google Scholar 

  51. Herdegen, T. et al. Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury. J. Neurosci. 18, 5124–5135 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Must, A. et al. The disease burden associated with overweight and obesity. JAMA 282, 1523–1529 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Facchini, F. S., Hua, N. W., Reaven, G. M. & Stoohs, R. A. Hyperinsulinemia: the missing link among oxidative stress and age-related diseases? Free Rad. Biol. Med. 29, 1302–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Withers, D. J. & White, M. F. Insulin action and type 2 diabetes: lessons from knockout mice. Curr. Opin. Endocrinol. Diab. 6, 141–145 (1999).

    Article  CAS  Google Scholar 

  56. Withers, D. J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, Y. H., Giraud, J., Davis, R. J. & White, M. F. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J. Biol. Chem. 278, 2896–2902 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Standaert, M. L. et al. Effects of knockout of the protein kinase C β gene on glucose transport and glucose homeostasis. Endocrinology 140, 4470–4477 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–337 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Adjei, A. A. Blocking oncogenic Ras signaling for cancer therapy. J. Natl Cancer Inst. 93, 1062–1074 (2001). A review of different approaches to Ras inhibition, including targeting JNK.

    Article  CAS  PubMed  Google Scholar 

  61. Smeal, T., Binetruy, B., Mercola, D. A., Birrer, M. & Karin, M. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354, 494–496 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Schutte, J., Minna, J. D. & Birrer, M. J. Deregulated expression of human c-Jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms rat-1a cells as a single gene. Proc. Natl Acad. Sci. USA 86, 2257–2261 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Johnson, R., Spiegelman, B., Hanahan, D. & Wisdom, R. Cellular transformation and malignancy induced by ras require c-Jun. Mol. Cell Biol. 16, 4504–4511 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eferl, R. et al. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 112, 181–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Schreiber, M. et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 13, 607–619 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ip, Y. T. & Davis, R. J. Signal transduction by the c-Jun N-terminal kinase (JNK) — from inflammation to development. Curr. Opin. Cell Biol. 10, 205–219 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Potapova, O. et al. The Jun kinase/stress-activated protein kinase pathway functions to regulate DNA repair and inhibition of the pathway sensitizes tumor cells to cisplatin. J. Biol. Chem. 272, 14041–14044 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Potapova, O. et al. c-Jun N-terminal kinase is essential for growth of human T98G glioblastoma cells. J. Biol. Chem. 275, 24767–24775 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Behrens, A., Jochum, W., Sibilia, M. & Wagner, E. F. Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 9, 2657–2663 (2000).

    Article  CAS  Google Scholar 

  70. Kennedy, N. J. et al. Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes Dev. 17, 629–637 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lei, K. et al. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH2-terminal kinase. Mol. Cell Biol. 22, 4929–4942 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoshida, S. et al. The c-Jun NH2-terminal kinase 3 (JNK3) gene: genomic structure, chromosomal assignment, and loss of expression in brain tumors. J. Hum. Genet. 46, 182–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Nishina, H. et al. Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature 385, 350–353 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Tournier, C. et al. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev. 15, 1419–1426 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Teng, D. H. et al. Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor. Cancer Res. 57, 4177–4182 (1997).

    CAS  PubMed  Google Scholar 

  76. Kim, H. L. et al. Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostatic cancers. Cancer Res. 61, 2833–2837 (2001).

    CAS  PubMed  Google Scholar 

  77. Yoshida, B. A. et al. Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res. 59, 5483–5487 (1999).

    CAS  PubMed  Google Scholar 

  78. Yamada, S. D. et al. Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res. 62, 6717–6723 (2002).

    CAS  PubMed  Google Scholar 

  79. Hess, P., Pihan, G., Sawyers, C. L., Flavell, R. A. & Davis, R. J. Survival signaling mediated by c-Jun NH2-terminal kinase in transformed B lymphoblasts. Nature Genet. 32, 201–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Dumas, J. Protein kinase inhibitors: emerging pharmacophores 1997–2000. Exp. Opin. Ther. Patents 11, 405–429 (2001). An excellent review of the many different kinase inhibitor chemical templates that were identified in the late 1990s.

    Article  CAS  Google Scholar 

  81. Gray, N. S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, F., Strand, A., Robbins, D., Cobb, M. H. & Goldsmith, E. J. Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution. Nature 367, 704–711 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Wilson, K. P. et al. Crystal structure of p38 mitogen-activated protein kinase. J. Biol. Chem. 271, 27696–27700 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Xie, X. et al. Crystal structure of JNK3: a kinase implicated in neuronal apoptosis. Structure 6, 983–991 (1998). The report of the JNK3 crystal structure provided a key tool for the identification of selective JNK inhibitors.

    Article  CAS  PubMed  Google Scholar 

  85. Bennett, B. L. et al. WO 0112609 (2001).

  86. Bain, J., McLauchlan, H., Elliott, M. & Cohen, P. The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199–204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kois, A. et al. WO 200246170 (2002).

  88. Press release, dated 10/21/2002; see http://www.corporate-ir.net/ireye/ir_site.zhtml?ticker=celg&script=410&layout=9&item_id=346725.A press release announcing the first Phase I clinical trial of a selective JNK inhibitor.

  89. Halazy, S., Church, D., Camps, M. & Gotteland, J. P. WO 0147920 (2001).

  90. Arkinstall, S. et al. WO 0123379 (2001).

  91. Arkinstall, S. et al. WO 0123378 (2001).

  92. Arkinstall, S. et al. WO 0123382 (2001).

  93. Salituro, F. G. et al. WO 0064872 (2000).

  94. Green, J. et al. WO 0112621 (2001).

  95. Ohkawa, S., Naruo, K., Miwatashi, S., Kimura, H. & Kawamoto, T. WO 2002062792 (2002).

  96. Corbett, W. L. & Luk, K. -C. & Mahaney, P. E. WO 0035909 (2000).

  97. Luk, K. -C., Mahaney, P. E. & Mischke, S. G. WO 0035906 (2000).

  98. Luk, K. -C. & Michoud, C. WO 0035921 (2000).

  99. Radcliffe, A. J. et al. WO 2003024967 (2003).

  100. Oinuma, H., Ohi, N., Sato, N. & Seshimo, H. WO 2002083648 (2002).

  101. Graczyk, P. et al. WO 2002081475 (2002).

  102. Lograsso, P. et al. WO 200191749 (2001).

  103. Weston, C. R. & Davis, R. J. The JNK signal transduction pathway. Curr. Opin. Genet. Dev. 12, 14–21 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to A. Lewis and B. Bennett at the Signal Research Division of Celgene for permission to reproduce Figs 3 and 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Manning.

Related links

Related links

DATABASES

LocusLink

APP

CDK5/p35

E-selectin

GSK3β

IL-2

JNK1

JNK2

JNK3

MAP2K4

MAP2K7

MAPK3

MMP3

MMP9

MMP13

PSEN1

PSEN2

TNF-α

Online Mendelian Inheritance in Man

Asthma

Inflammatory bowel disease

Multiple sclerosis

Psoriasis

Rheumatoid arthritis

Glossary

AP-1 TRANSCRIPTION FACTOR

The transcription factor AP-1 is composed of homo- or hetero-dimers of proteins that belong to the FOS and JUN families. JUN proteins can homo-dimerize, but FOS proteins can only form stable dimers with JUN. AP-1 dimers can be phosphorylated by JNK and other MAP kinases and hence develop an enhanced DNA-binding capacity and transcriptional activity.

IC50

The concentration of drug at which activity of a particular assay is inhibited by 50%. This is a typically used value to describe the relative potency of a drug agent.

NEUROFIBRILLARY TANGLES

Intracellular aggregates of paired helical filaments composed primarily of hyper-phosphorylated Tau proteins. Tau is a microtubule-associated protein found within neurons and normally restricted to axons. Hyper-phosphorylated Tau forms tangled masses that consume the neuronal cell body, presumably leading to neuronal dysfunction and ultimately cell death.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manning, A., Davis, R. Targeting JNK for therapeutic benefit: from junk to gold?. Nat Rev Drug Discov 2, 554–565 (2003). https://doi.org/10.1038/nrd1132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing