Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacophylogenomics: genes, evolution and drug targets

Key Points

  • Orthologues (genes in different species arising from a common ancestral gene during speciation) are important in drug discovery for establishing assays and animal models, but a wider-ranging phylogenomic view can lend further insight into function. This can be accomplished not only through the detection of conserved functional elements, but also of functional shifts that could shed light on species differences that often adversely affect drug discovery projects.

  • Establishing orthology is best accomplished through full phylogenetic reconstructions, which then also provide a framework for assessing selective pressures that could signal functional shifts. The nature and extent of selection can be estimated, for example, on the basis of ratios of non-synonymous-to-synonymous nucleotide substitutions and evidence of selective sweeps in patterns of polymorphism.

  • Paralogues (homologous genes in the same species arising by duplication) are also important in drug discovery, not only for compiling classes of tractable targets and outlining selectivity issues, but also for the evolutionary relationship of paralogues to pleiotropy (multifunctionality) and functional redundancy of targets, phenomena that are critical to assessing druggability.

  • Pleiotropy and redundancy are in turn related to crosstalk and heteromery, increasingly prominent themes in drug discovery and (along with alternative transcription) sources of combinatoric diversity of function arising from the genome. Such phenomena also indicate the relevance of an evolutionary view of pathways and networks, whose elements can co-evolve in a way that can also be detected by phylogenomic means and further contribute to functional characterization.

  • Putative drug targets may be profitably viewed through a variety of phylogenomic 'property filters' related to evolutionary rates, selective pressures, degree and nature of paralogy, and factors reflecting pleiotropy such as size, breadth of expression and interaction potential.

Abstract

Phylogenomics, which advocates an evolutionary view of genomic data, has been useful in the prediction of protein function, of significant sequence and structural elements, and of protein interactions and other relationships. Although such information is important in characterizing individual pharmacological targets, evolutionary analyses also indicate new ways to view the overall space of gene products in terms of their suitability for therapeutic intervention. This view places increased emphasis on the comprehensive analysis of the evolutionary history of targets, in particular their orthology and paralogy relationships, the rate and nature of evolutionary change they have undergone, and their involvement in evolving pathways and networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship of orthology and paralogy to the rate and nature of evolutionary change.
Figure 2: Phylogenetic reconstruction of the CYP2 family of cytochrome P450s.
Figure 3: Schematic representations of various mappings of genes to functions.
Figure 4: Phylogenomics and expression patterns.
Figure 5: Phylogenomics and interaction patterns.

Similar content being viewed by others

References

  1. Eisen, J. A., Kaiser, D. & Myers, R. M. Gastrogenomic delights: a moveable feast. Nature Med. 3, 1076 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Eisen, J. A. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res. 8, 163–167 (1998). The first full description of the phylogenomic approach.

    Article  CAS  PubMed  Google Scholar 

  3. Casari, G., Sander, C. & Valencia, A. A method to predict functional residues in proteins. Nature Struct. Biol. 2, 171–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Mirney, L. A. & Gelfand, M. S. Using orthologous and paralogous proteins to identify specificity-determining residues in bacterial transcription factors. J. Mol. Biol. 321, 7–20 (2002).

    Article  CAS  Google Scholar 

  5. Eisen, J. A. & Wu, M. Phylogenetic analysis and gene functional predictions: phylogenomics in action. Theor. Popul. Biol. 61, 481–487 (2002).

    Article  PubMed  Google Scholar 

  6. Hochachka, P. W. & Monge, C. Evolution of human hypoxia tolerance physiology. Adv. Exp. Med. Biol. 475, 25–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Barclay, A. N. Ig-like domains: evolution from simple interaction molecules to sophisticated antigen recognition. Proc. Natl Acad. Sci. USA 96, 14672–14674 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaaro, H., Beck, G., Conticello, S. G. & Fainzilber, M. Evolving better brains: a need for neurotrophins? Trends Neurosci. 24, 79–85 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Wilson, D. R. Evolutionary epidemiology and manic depression. Br. J. Med. Psychol. 71, 375–395 (1998).

    Article  PubMed  Google Scholar 

  10. Gammelgaard, A. Evolutionary biology and the concept of disease. Med. Health Care Philos. 3, 109–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Tatusov, R. L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gilks, W. R. et al. Modeling the percolation of annotation errors in a database of protein sequences. Bioinformatics 18, 1641–1649 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Jones, D. T. & Swindells, M. B. Getting the most from PSI-BLAST. Trends Biochem. Sci. 27, 161–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. George, R. A. & Heringa, J. Protein domain identification and improved sequence similarity searching using PSI-BLAST. Proteins 48, 672–681 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Holm, L. & Sander, C. Protein folds and families: sequence and structure alignments. Nucleic Acids Res. 27, 244–247 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Todd, A. E., Orengo, C. A. & Thornton, J. M. Plasticity of enzyme active sites. Trends Biochem. Sci. 27, 419–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Hou, J., Sims, G. E., Zhang, C. & Kim, S. H. A global representation of the protein fold space. Proc. Natl Acad. Sci. USA 100, 2386–2390 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thornton, J. W. & DeSalle, R. A new method to localize and test the significance of incongruence: detecting domain shuffling in the nuclear receptor superfamily. Syst. Biol. 49, 183–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Koski, L. B. & Golding, G. B. The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol. 52, 540–542 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Liao, D. Concerted evolution: molecular mechanism and biological implications. Am. J. Hum. Genet. 64, 24–30 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amadou, C. Evolution of the MHC class I region: the framework hypothesis. Immunogenetics 49, 362–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Swofford, D. L., Olsen, G. J., Waddell, P. J. & Hillis, D. M. in Molecular Systematics (eds Hillis, D. M., Moritz, C. & Mable, B. K.) 407–514 (Sinauer Associates, Sunderland, 1996).

    Google Scholar 

  23. Storm, C. E. & Sonnhammer, E. L. Automated ortholog inference from phylogenetic trees and calculation of orthology reliability. Bioinformatics 18, 92–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Zmasek, C. M. & Eddy, S. R. Analyzing proteomes by automated phylogenomics using resampled inference of orthologs. BMC Bioinformatics 3, 14 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koonin, E. V., Mushegian, A. R. & Bork, P. Non-orthologous gene displacement. Trends Genet. 12, 334–336 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Brookfield, J. F. What determines the rate of sequence evolution? Curr. Biol. 10, R410–R411 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Lake, B. G. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem. Toxicol. 37, 423–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Li, W. -H. Molecular Evolution (Sinauer Associates, Sunderland, 1997).

    Google Scholar 

  29. Messier, W. & Stewart, C. B. Episodic adaptive evolution of primate lysozymes. Nature 385, 151–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS  PubMed  Google Scholar 

  31. Benner, S. A. et al. Functional inferences from reconstructed evolutionary biology involving rectified databases — an evolutionarily grounded approach to functional genomics. Res. Microbiol. 151, 97–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Gaucher, E. A. et al. Predicting functional divergence in protein evolution by site-specific rate shifts. Trends Biochem. Sci. 27, 315–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Lopez, P., Casane, D. & Philippe, H. Heterotachy, an important process in protein evolution. Mol. Biol. Evol. 19, 1–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Bamshad, M. & Wooding, S. P. Signatures of natural selection in the human genome. Nature Rev. Genet. 4, 99–111 (2003). An extensive and accessible review of evidence for selection in the human genome.

    Article  CAS  PubMed  Google Scholar 

  35. Smith, J. M. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. Camb. 23, 23–35 (1974).

    Article  CAS  Google Scholar 

  36. Przeworski, M. The signature of positive selection at randomly chosen loci. Genetics 160, 1179–1189 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Groot, N. G. et al. Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proc. Natl Acad. Sci. USA 99, 11748–11753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Akey, J. M. et al. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 12, 1805–1814 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002). Demonstrates the use of measures of selection to suggest a recent functional shift in a gene also associated with an inherited disorder.

    Article  CAS  PubMed  Google Scholar 

  40. DeLisi, L. E. Speech disorder in schizophrenia: review of the literature and exploration of its relation to the uniquely human capacity for language. Schizophr. Bull. 27, 481–496 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Olson, M. V. & Varki, A. Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Rev. Genet. 4, 20–28 (2003). Makes a strong case for the utility of primate genomes in the study of human disease.

    Article  CAS  PubMed  Google Scholar 

  42. Rockman, M. V. & Wray, G. A. Abundant raw material for cis-regulatory evolution in humans. Mol. Biol. Evol. 19, 1991–2004 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Akashi, H. Gene expression and molecular evolution. Curr. Opin. Genet. Dev. 11, 660–666 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Duan, J. et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 12, 205–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Hurst, L. D. & Pal, C. Evidence for purifying selection acting on silent sites in BRCA1. Trends Genet. 17, 62–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Durand, D. Vertebrate evolution: doubling and shuffling with a full deck. Trends Genet. 19, 2–5 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Samonte, R. V. & Eichler, E. E. Segmental duplications and the evolution of the primate genome. Nature Rev. Genet. 3, 65–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Bailey, J. A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Friedman, R. & Hughes, A. L. The temporal distribution of gene duplication events in a set of highly conserved human gene families. Mol. Biol. Evol. 20, 154–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Smith G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Wise, A. et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278, 9869–9874 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Vicker, N. et al. Novel angular benzophenazines: dual topoisomerase I and topoisomerase II inhibitors as potential anticancer agents. J. Med. Chem. 45, 721–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Xia, W. et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21, 6255–6263 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Lobell, R. B. et al. Evaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models. Cancer Res. 61, 8758–8768 (2001).

    CAS  PubMed  Google Scholar 

  55. Foley, C. L. & Kirby, R. S. 5α-reductase inhibitors: what's new? Curr. Opin. Urol. 13, 31–37 (2003).

    Article  PubMed  Google Scholar 

  56. Heath, R. J., White, S. W. & Rock, C. O. Lipid biosynthesis as a target for antibacterial agents. Prog. Lipid Res. 40, 467–497 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Goldstein, J. M. The new generation of antipsychotic drugs: how atypical are they? Int. J. Neuropsychopharmacol. 3, 339–349 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Hodgkin, J. Seven types of pleiotropy. Int. J. Dev. Biol. 42, 501–505 (1998). A thorough review and catalogue of manifestations of pleiotropy from a genetic perspective.

    CAS  PubMed  Google Scholar 

  59. Jeffery, C. J. Moonlighting proteins. Trends Biochem. Sci. 24, 8–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Copley, S. D. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr. Opin. Chem. Biol. 7, 265–272 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Wistow, G. & Piatigorsky, J. Recruitment of enzymes as lens structural proteins. Science 236, 1554–1556 (1987).

    Article  CAS  PubMed  Google Scholar 

  62. Citron, B. A. et al. Identity of 4α-carbinolamine dehydratase, a component of the phenylalanine hydroxylation system, and DCoH, a transregulator of homeodomain proteins. Proc. Natl Acad. Sci. USA 89, 11891–11894 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun, Y. J. et al. The crystal structure of a multifunctional protein: phosphoglucose isomerase/autocrine motility factor/neuroleukin. Proc. Natl Acad. Sci. USA 96, 5412–5417 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gomez, A., Domedel, N., Cedano, J., Pinol, J. & Querol, E. Do current sequence analysis algorithms disclose multifunctional (moonlighting) proteins? Bioinformatics 19, 895–896 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730 (2002).

    Google Scholar 

  66. Hughes, A. L. Adaptive evolution after gene duplication. Trends Genet. 18, 433–434 (1994). Suggests that pleiotropy might precede paralogy in the evolution of novel gene function.

    Article  Google Scholar 

  67. Brett, D. et al. Alternative splicing and genome complexity. Nature Genet. 30, 29–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Wagner, A. The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. Genetics 154, 1389–1401 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gu, Z. et al. Role of duplicate genes in genetic robustness against null mutations. Nature 421, 63–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Zhou, F. C., Lesch, K. P. & Murphy, D. L. Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res. 942, 109–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Muoio, D. M. et al. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR)-α knock-out mice. Evidence for compensatory regulation by PPAR-δ. J. Biol. Chem. 277, 26089–26097 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Troy, C. M. et al. Death in the balance: alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J. Neurosci. 21, 5007–5016 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, J. et al. The tissue-specific, compensatory expression of cyclooxygenase-1 and -2 in transgenic mice. Prostaglandins Other Lipid Mediat. 67, 121–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, L. et al. Redundant pathways for negative feedback regulation of bile acid production. Dev. Cell 2, 721–731 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Mesulam, M. M. et al. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110, 627–639 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Haddad, J. J. Cytokines and related receptor-mediated signaling pathways. Biochem. Biophys. Res. Commun. 297, 700–713 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Dumont, J. E., Pecasse, F. & Maenhaut, C. Crosstalk and specificity in signalling. Are we crosstalking ourselves into general confusion? Cell Signal. 13, 457–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Iwamoto, T. et al. STAT and SMAD signalling in cancer. Histol. Histopathol. 17, 887–895 (2002).

    CAS  PubMed  Google Scholar 

  79. Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Stork, P. J. & Schmitt, J. M. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol. 12, 258–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Schwartz, M. A. & Ginsberg, M. H. Networks and crosstalk: integrin signalling spreads. Nature Cell Biol. 4, E65–E68 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Marshall, F. H. et al. GABAB receptors function as heterodimers. Biochem. Soc. Trans. 27, 530–535 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Angers, S., Salahpour, A. & Bouvier, M. Biochemical and biophysical demonstration of GPCR oligomerization in mammalian cells. Life Sci. 68, 2243–2250 (2002).

    Article  Google Scholar 

  84. North, R. A. Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Czirjak, G. & Enyedi, P. Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J. Biol. Chem. 277, 5426–5432 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, Y. & Eisenberg, D. 3D domain swapping: as domains continue to swap. Protein Sci. 11, 1285–1299 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Waxman, D. & Peck, J. R. Pleiotropy and the preservation of perfection. Science 279, 1210–1213 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Galis, F., van Dooren, T. J. & Metz, J. A. Conservation of the segmented germband stage: robustness or pleiotropy? Trends Genet. 18, 504–509 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Lipman, D. J. et al. The relationship of protein conservation and sequence length. BMC Evol. Biol. 2, 20 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Duret, L. & Mouchiroud, D. Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol. Biol. Evol. 17, 68–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Hastings, K. E. M. Strong evolutionary conservation of broadly expressed protein isoforms in the troponin I gene family and other vertebrate gene families. J. Mol. Evol. 42, 631–640 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Moskowitz, D. W. Is angiotensin I-converting enzyme a “master” disease gene? Diabetes Technol. Ther. 4, 683–711 (2002).

    Article  PubMed  Google Scholar 

  93. Viner, J. L., Umar, A. & Hawk, E. T. Chemoprevention of colorectal cancer: problems, progress, and prospects. Gastroenterol. Clin. North Am. 31, 971–999 (2002).

    Article  PubMed  Google Scholar 

  94. Horowitz, N. H. in Evolving Genes and Proteins (eds Bryson, V. & Vogel, H. J.) 15–23 (Academic Press, New York, 1965).

    Book  Google Scholar 

  95. Belfaiza, J. et al. Evolution of biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc. Natl Acad. Sci. USA 83, 867–871 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wilmanns, M. et al. Structural conservation in parallel β/α-barrel enzymes that catalyze three sequential reactions in the pathway of tryptophan biosynthesis. Biochemistry 30, 9161–9169 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Fani, R., Lio, P., Chiarelli, I. & Bazzicalupo, M. The evolution of the histidine biosynthetic genes in prokaryotes: a common ancestor for the hisA and hisF genes. J. Mol. Evol. 38, 489–495 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Alves, R., Chaleil, R. A. & Sternberg, M. J. Evolution of enzymes in metabolism: a network perspective. J. Mol. Biol. 320, 751–770 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Copley, R. R. & Bork, P. Homology among (βα)8 barrels: implications for the evolution of metabolic pathways. J. Mol. Biol. 303, 627–641 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Forst, C. V. & Schulten, K. Phylogenetic analysis of metabolic pathways. J. Mol. Evol. 52, 471–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Wagner, A. Robustness against mutations in genetic networks of yeast. Nature Genet. 24, 355–361 (2001).

    Article  CAS  Google Scholar 

  102. Grange, R. W. et al. Functional and molecular adaptations in skeletal muscle of myoglobin-mutant mice. Am. J. Physiol. Cell Physiol. 281, C1487–C1494 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. de Groof, A. J., Oerlemans, F. T., Jost, C. R. & Wieringa, B. Changes in glycolytic network and mitochondrial design in creatine kinase-deficient muscles. Muscle Nerve 24, 1188–1196 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Zheng, T. S. et al. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nature Med. 6, 1241–1247 (2001).

    Article  CAS  Google Scholar 

  105. Putcha, G. V. et al. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J. Cell Biol. 157, 441–453 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Marcotte, E. M. et al. Detecting protein function and protein–protein interactions from genome sequences. Science 285, 751–753 (1999). Shows that products of genes that fuse in the course of evolution also tend to interact or participate in common pathways in species where they remain unfused.

    Article  CAS  PubMed  Google Scholar 

  107. Pellegrini, M. et al. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl Acad. Sci. USA 96, 4285–4288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marcotte, E. M., Xenarios, I., van der Bliek, A. M. & Eisenberg, D. Localizing proteins in the cell from their phylogenetic profiles. Proc. Natl Acad. Sci. USA 97, 12115–12120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goh, C. S. et al. Co-evolution of proteins with their interaction partners. J. Mol. Biol. 299, 283–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Goh, C. S. & Cohen, F. E. Co-evolutionary analysis reveals insights into protein–protein interactions. J. Mol. Biol. 324, 177–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Bafna, V., Hannenhalli, S., Rice, K. & Vawter, L. Ligand-receptor pairing via tree comparison. J. Comput. Biol. 7, 59–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Pazos, F. & Valencia, A. Similarity of phylogenetic trees as indicator of protein–protein interaction. Protein Eng. 14, 609–614 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Koretke, K. K. et al. Evolution of two-component signal transduction. Mol. Biol. Evol. 17, 1956–1970 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Fraser, H. B. et al. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Jordan, I. K., Wolf, Y. I. & Koonin, E. V. No simple dependence between protein evolution rate and the number of protein–protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol. Biol. 3, 1 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fraser, H. B., Wall, D. P. & Hirsh, A. E. A simple dependence between protein evolution rate and the number of protein–protein interactions. BMC Evol. Biol. 3, 11 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Featherstone, D. E. & Broadie, K. Wrestling with pleiotropy: genomic and topological analysis of the yeast expression network. Bioessays 24, 267–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Ohno, S. Evolution by Gene and Genome Duplication (Springer, Berlin, 1970). The classic statement of the theory that duplicated genes are released from selective pressure and are therefore free to rapidly evolve new function.

    Book  Google Scholar 

  120. Wilson, A. C., Carlson, S. S. & White, T. J. Biochemical evolution. Annu. Rev. Biochem. 46, 573–639 (1977).

    Article  CAS  PubMed  Google Scholar 

  121. Jordan, I. K., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 12, 962–968 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hirsh, A. E. & Fraser, H. B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Pal, C., Papp, B. & Hurst, L. D. Genomic function: rate of evolution and gene dispensability. Nature 421, 496–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Hirsh, A. E. & Fraser, H. B. Genomic function: Rate of evolution and gene dispensability. Nature 421, 497–498 (2003).

    Article  CAS  Google Scholar 

  125. Hurst, L. D. & Smith, N. G. C. Do essential genes evolve slowly? Curr. Biol. 9, 747–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Conant, G. C. & Wagner, A. GenomeHistory: a software tool and its application to fully sequenced genomes. Nucleic Acids Res. 30, 3378–3386 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schrag, J. D., Winkler, F. K. & Cygler, M. Pancreatic lipases: evolutionary intermediates in a positional change of catalytic carboxylates? J. Biol. Chem. 267, 4300–4303 (1992).

    Article  CAS  PubMed  Google Scholar 

  128. Zhang, J., Dyer, K. D. & Rosenberg, H. F. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proc. Natl Acad. Sci. USA 97, 4701–4706 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wooding, S. P. et al. DNA sequence variation in a 3.7-kb noncoding sequence 5' of the CYP1A2 gene: implications for human population history and natural selection. Am. J. Hum. Genet. 71, 528–542 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  131. Bromham, L. & Penn, D. The modern molecular clock. Nature Rev. Genet. 4, 216–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Mangel, M. & Samaniego, F. J. Abraham Wald's work on aircraft survivability. J. Amer. Statistical Assoc. 79, 259–270 (1984).

    Article  Google Scholar 

  133. Hardison, R. C., Oeltjen, J. & Miller, W. Long human–mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res. 7, 959–966 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Wasserman, W. W., Palumbo, M., Thompson, W., Fickett, J. W. & Lawrence, C. E. Human–mouse genome comparisons to locate regulatory sites. Nature Genet. 26, 225–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Bofelli, D. et al. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299, 1391–1394 (2003).

    Article  CAS  Google Scholar 

  136. Fitch, W. M. Distinguishing homologous from analogous proteins. Syst. Zool. 19, 99–113 (1970). The origin of the terms 'orthologue' and 'paralogue'.

    Article  CAS  PubMed  Google Scholar 

  137. Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).

    Google Scholar 

  138. Black, C. G. & Coppel, R. L. Synonymous and non-synonymous mutations in a region of the Plasmodium chabaudi genome and evidence for selection acting on a malaria vaccine candidate. Mol. Biochem. Parasitol. 111, 447–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Woolhouse, M. E., Webster, J. P., Domingo, E., Charlesworth, B. & Levin, B. R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genet. 32, 569–577 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343 (2002). Introduces the notion of phylogenetic analysis of overall gene expression patterns.

    Article  CAS  PubMed  Google Scholar 

  141. Tavazoie, S. et al. Systematic determination of genetic network architecture. Nature Genet. 22, 281–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Wang, Y., Schnegelsberg, P. N., Dausman, J. & Jaenisch, R. Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin. Nature 379, 823–825 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. Tong, A. H. et al. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295, 321–324 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Ajay, A., Walters, W. P. & Murcko M. A. Can we learn to distinguish between “drug-like” and “nondrug-like” molecules? J. Med. Chem. 41, 3314–3324 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Muegge, I., Heald, S. L. & Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 44, 1841–1846 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 4–25 (1997).

    Article  Google Scholar 

  147. Veber, D. F. et al. Molecular properties that influence oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002). An influential review that helps establish a view of targets as having measurable properties (their drug-binding domain content) making them generally suitable for therapeutic intervention.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks J. R. Brown, K. Rice, and N. Odendahl for many helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE

LocusLink

DCOHM

BRCA1

CFTR

Cyp2a1

Cyp2a3

Cyp2a4

CYP2A6

dopamine D2

EGFR

ERBB2

FOXP2

GPI

PPAR-γ

SRD5A1

SRD5A2

FURTHER INFORMATION

PHYLogeny Inference Package (PHYLIP)

Phylogenetic Analysis Using Parsimony (PAUP)

Resampled Inference of Orthologs (RIO)

Phylogenetic Analysis by Maximum Likelihood (PAML)

Glossary

PHYLOGENOMICS

The application to genomics of principles and techniques from evolutionary biology, to achieve a better understanding of gene function. 'Pharmacophylogenomics' is the use of phylogenomics in aid of drug discovery, through improved target selection and validation.

HOMOLOGUES

Genes that are similar by virtue of having derived from the same ancestral gene. The similarity might be evident in the DNA sequences of the genes, or in the sequence and/or structure of the gene products. Similarity does not guarantee homology, as unrelated sequences can undergo convergent evolution.

ORTHOLOGUES

Homologous genes in different species arising from a common ancestral gene at the time of speciation (Box 2). Orthology does not guarantee common function, as function can change over time and vary in different evolutionary lineages.

PARALOGUES

Homologous genes in the same species arising by duplication (Box 2).

PHYLOGENETIC RECONSTRUCTION

The attempt to recreate the evolutionary history of a set of orthologues and/or paralogues (or, more generally, any set of measurable characters) and portray it in tree form. A number of different methods and algorithms are used for this purpose, and are the subject of much technical debate, but in the final analysis certainty as to ancestral forms is not possible.

PLEIOTROPY

The property of a gene or gene product by which it exhibits multiple phenotypic effects or possesses multiple functions.

REDUNDANCY

The property by which more than one gene or gene product is able to produce a given phenotype or function.

BLAST

Basic Local Alignment Search Tool, the most widely used bioinformatics algorithm130. It efficiently searches sequence databases for the entries most similar to a query sequence. Recent, more advanced, versions and related tools are specially adapted to finding distant homologues, for which sequence similarity is not obvious but typically some structural similarity is retained.

INCONGRUENT EVOLUTION

Apparent topological differences in the phylogenetic trees of individual genes relative to that of the species, or of individual domains or regions within genes relative to each other. This can arise from phenomena such as domain shuffling or horizontal transmission of genes between species.

CONCERTED EVOLUTION

Greater-than-expected similarity seen in members of gene families within a species relative to that seen between species. This can arise from phenomena related to physical mechanisms of replication and recombination that tend to maintain uniformity between (often tandem) copies.

SYNTENY

The property of genes of being found on the same chromosome. The ordering of orthologues on chromosomes is often conserved between related species over extended segments, indicating a common ancestry of those segments; this phenomenon is referred to as conservation of synteny. (To describe the orthologues or regions of the different species as being syntenic to each other is a common misuse of the term.)

MOLECULAR CLOCK

The hypothesis that, except for the effects of functional constraints on gene products, sequence substitutions occur at a constant rate on an evolutionary timescale. It is closely tied to the 'neutral theory' of evolution, which asserts that most such mutations are selectively neutral and driven only by random drift. Although subject to certain caveats and continuing debate, the notion of the molecular clock has proven to be an important and useful tool in many contexts131.

NON-SYNONYMOUS SUBSTITUTION

A nucleotide substitution that results in an amino acid change.

SYNONYMOUS SUBSTITUTION

A 'silent' nucleotide substitution, often in the third codon position, that does not result in an amino acid change.

GENE SHARING (RECRUITMENT)

An adaptation of a gene to serve an additional unrelated function, generally in a different tissue and presumably by the incorporation of alternative regulatory elements at the same locus. It is one proposed mechanism for establishing pleiotropy.

CROSSTALK

The interaction of elements of distinct signalling or regulatory pathways such that an input to one pathway has some effect on the output of the other.

HETEROMERY

The physical association of distinct but often similar macromolecules, as when a pair of protein subunits combine to form a heterodimer. A combination of identical subunits is called homomery.

DOMAIN SWAPPING

The symmetric exchange of portions of polypeptides (ranging up to entire domains), by partial unfolding, between subunits of a multimeric (usually dimeric) assemblage, such that the exchanged portions occupy positions in their counterpart subunits analogous to those they would assume in the monomers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Searls, D. Pharmacophylogenomics: genes, evolution and drug targets. Nat Rev Drug Discov 2, 613–623 (2003). https://doi.org/10.1038/nrd1152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing