Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Congenital hearing loss

Abstract

Congenital hearing loss (hearing loss that is present at birth) is one of the most prevalent chronic conditions in children. In the majority of developed countries, neonatal hearing screening programmes enable early detection; early intervention will prevent delays in speech and language development and has long-lasting beneficial effects on social and emotional development and quality of life. A diagnosis of hearing loss is usually followed by a search for an underlying aetiology. Congenital hearing loss might be attributed to environmental and prenatal factors, which prevail in low-income settings; congenital infections, particularly cytomegalovirus infection, are also a common risk factor for hearing loss. Genetic causes probably account for the majority of cases in developed countries; mutations can affect any component of the hearing pathway, in particular, inner ear homeostasis (endolymph production and maintenance) and mechano-electrical transduction (the conversion of a mechanical stimulus into electrochemical activity). Once the underlying cause of hearing loss is established, it might direct therapeutic decision making and guide prevention and (genetic) counselling. Management options include specific antimicrobial therapies, surgical treatment of craniofacial abnormalities and implantable or non-implantable hearing devices. An improved understanding of the pathophysiology and molecular mechanisms that underlie hearing loss and increased awareness of recent advances in genetic testing will promote the development of new treatment and screening strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross-section of the outer, middle and inner ear.
Figure 2: The stria vascularis and sensory hair cells.
Figure 3: Audiometry assessment.
Figure 4: Multidisciplinary algorithm for the assessment of hearing function in infants.
Figure 5: Non-medical treatments for hearing loss.

Similar content being viewed by others

Antoni Torres, Catia Cilloniz, … Tom van der Poll

References

  1. Boudewyns, A. et al. Otitis media with effusion: an underestimated cause of hearing loss in infants. Otol. Neurotol. 32, 799–804 (2011).

    Google Scholar 

  2. Rapin, I. & Gravel, J. S. Auditory neuropathy: a biologically inappropriate label unless acoustic nerve involvement is documented. J. Am. Acad. Audiol. 17, 147–150 (2006).

    Google Scholar 

  3. Cone-Wesson, B. & Rance, G. Auditory neuropathy: a brief review. Curr. Opin. Otolaryngol. Head Neck Surg. 8, 421–425 (2000).

    Google Scholar 

  4. Starr, A., Picton, T. W., Sininger, Y., Hood, L. J. & Berlin, C. I. Auditory neuropathy. Brain 119, 741–753 (1996).

    Google Scholar 

  5. Yoshinaga-Itano, C., Sedey, A. L., Coulter, D. K. & Mehl, A. L. Language of early- and later-identified children with hearing loss. Pediatrics 102, 1161–1171 (1998). This paper shows the effect of delayed detection and treatment for congenital hearing loss on speech and language development.

    Google Scholar 

  6. Fortnum, H. & Davis, A. Epidemiology of permanent childhood hearing impairment in Trent Region, 1985–1993. Br. J. Audiol. 31, 409–446 (1997).

    Google Scholar 

  7. American Academy of Pediatrics, Joint Committee on Infant Hearing. Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics 120, 898–921 (2007). This paper presents the guidelines of the American Academy of Pediatrics on the importance of universal neonatal hearing screening, risk factors for congenital hearing loss and management strategies for those who fail the screening test.

    Google Scholar 

  8. Norton, S. J. et al. Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance. Ear Hear. 21, 508–528 (2000).

    Google Scholar 

  9. Morton, C. C. & Nance, W. E. Newborn hearing screening — a silent revolution. N. Engl. J. Med. 354, 2151–2164 (2006).

    Google Scholar 

  10. Fortnum, H. M., Summerfield, A. Q., Marshall, D. H., Davis, A. C. & Bamford, J. M. Prevalence of permanent childhood hearing impairment in the United Kingdom and implications for universal neonatal hearing screening: questionnaire based ascertainment study. BMJ 323, 536–540 (2001).

    Google Scholar 

  11. Watkin, P. & Baldwin, M. The longitudinal follow up of a universal neonatal hearing screen: the implications for confirming deafness in childhood. Int. J. Audiol. 51, 519–528 (2012).

    Google Scholar 

  12. Nikolopoulos, T. P. Auditory dyssynchrony or auditory neuropathy: understanding the pathophysiology and exploring methods of treatment. Int. J. Pediatr. Otorhinolaryngol. 78, 171–173 (2014).

    Google Scholar 

  13. Mathers, C., Smith, A. & Concha, M. Global burden of hearing loss in the year 2000. WHOhttp://www.who.int/healthinfo/statistics/bod_hearingloss.pdf (2000).

  14. Driscoll, C., Beswick, R., Doherty, E., D'silva, R. & Cross, A. The validity of family history as a risk factor in pediatric hearing loss. Int. J. Pediatr. Otorhinolaryngol. 79, 654–659 (2015).

    Google Scholar 

  15. van Dommelen, P. & Verkerk, P. H. & van Straaten, H. L. Hearing loss by week of gestation and birth weight in very preterm neonates. J. Pediatr. 166, 840–843.e1 (2015).

    Google Scholar 

  16. van Dommelen, P., Mohangoo, A. D., Verkerk, P. H., van der Ploeg, C. P. & van Straaten, H. L. Risk indicators for hearing loss in infants treated in different neonatal intensive care units. Acta Paediatr. 99, 344–349 (2010).

    Google Scholar 

  17. Koenighofer, M., Parzefall, T., Ramsebner, R., Lucas, T. & Frei, K. Delayed auditory pathway maturation and prematurity. Wien. Klin. Wochenschr. 127, 440–444 (2015).

    Google Scholar 

  18. Marazita, M. L. et al. Genetic epidemiological studies of early-onset deafness in the U. S. school-age population. Am. J. Med. Genet. 46, 486–491 (1993).

    Google Scholar 

  19. Smith, R. J., Bale, J. F. Jr & White, K. R. Sensorineural hearing loss in children. Lancet 365, 879–890 (2005).

    Google Scholar 

  20. Snoeckx, R. L. et al. GJB2 mutations and degree of hearing loss: a multicenter study. Am. J. Hum. Genet. 77, 945–957 (2005). This paper reports a large multicentre study that is unique in establishing a genotype–phenotype correlation for GJB2 based on a very large set of patients, providing detailed information for many common genotypes.

    Google Scholar 

  21. Cone-Wesson, B. et al. Identification of neonatal hearing impairment: infants with hearing loss. Ear Hear. 21, 488–507 (2000).

    Google Scholar 

  22. Kochhar, A., Hildebrand, M. S. & Smith, R. J. H. Clinical aspects of hereditary hearing loss. Genet. Med. 9, 393–408 (2007).

    Google Scholar 

  23. Grosse, S. D., Ross, D. S. & Dollard, S. C. Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: a quantitative assessment. J. Clin. Virol. 41, 57–62 (2008). This is an outstanding overview of the overall economic impact of CMV-associated hearing loss.

    Google Scholar 

  24. Goderis, J. et al. Hearing loss and congenital CMV infection: a systematic review. Pediatrics 134, 972–982 (2014).

    Google Scholar 

  25. Banatvala, J. E. & Brown, D. W. Rubella. Lancet 363, 1127–1137 (2004).

    Google Scholar 

  26. Korver, A. M. et al. Causes of permanent childhood hearing impairment. Laryngoscope 121, 409–416 (2011).

    Google Scholar 

  27. Lammens, F., Verhaert, N., Devriendt, K., Debruyne, F. & Desloovere, C. Aetiology of congenital hearing loss: a cohort review of 569 subjects. Int. J. Pediatr. Otorhinolaryngol. 77, 1385–1391 (2013).

    Google Scholar 

  28. Declau, F., Boudewyns, A., Van den Ende, J., Peeters, A. & van den Heyning, P. Etiologic and audiologic evaluations after universal neonatal hearing screening: analysis of 170 referred neonates. Pediatrics 121, 1119–1126 (2008).

    Google Scholar 

  29. Zelante, L. et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum. Mol. Genet. 6, 1605–1609 (1997).

    Google Scholar 

  30. Riazuddin, S. et al. Tricellulin is a tight-junction protein necessary for hearing. Am. J. Hum. Genet. 79, 1040–1051 (2006).

    Google Scholar 

  31. Wilcox, E. R. et al. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104, 165–172 (2001).

    Google Scholar 

  32. Grimmer, J. F. & Hedlund, G. Vestibular symptoms in children with enlarged vestibular aqueduct anomaly. Int. J. Pediatr. Otorhinolaryngol. 71, 275–282 (2007).

    Google Scholar 

  33. Kim, B. G. et al. Early deterioration of residual hearing in patients with SLC26A4 mutations. Laryngoscope 126, E286–E291 (2016).

    Google Scholar 

  34. Naz, S. et al. Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J. Med. Genet. 41, 591–595 (2004).

    Google Scholar 

  35. Donaudy, F. et al. Espin gene (ESPN) mutations associated with autosomal dominant hearing loss cause defects in microvillar elongation or organisation. J. Med. Genet. 43, 157–161 (2006).

    Google Scholar 

  36. Kitajiri, S. et al. Actin-bundling protein TRIOBP forms resilient rootlets of hair cell stereocilia essential for hearing. Cell 141, 786–798 (2010).

    Google Scholar 

  37. Fettiplace, R. & Kim, K. X. The physiology of mechanoelectrical transduction channels in hearing. Physiol. Rev. 94, 951–986 (2014).

    Google Scholar 

  38. Roux, I. et al. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127, 277–289 (2006). This paper demonstrates that otoferlin interacts with SNARE (soluble NSF (N-ethylmaleimide-sensitive factor) molecules at the afferent ribbon synapses in inner hair cells of the cochlea to trigger exocytosis of the neurotransmitter glutamate.

    Google Scholar 

  39. Leal, M. C. et al. Hearing loss in infants with microcephaly and evidence of congenital Zika virus infection — Brazil, November 2015–May 2016. MMWR Morb. Mortal. Wkly Rep. 65, 917–919 (2016). Zika virus infection is the latest of the ‘TORCH’ infection complex to be demonstrated as a cause of sensorineural hearing loss. Zika virus infection should be added to the list of infectious diseases that are known to induce hearing loss in infants.

    Google Scholar 

  40. Cannon, M. J. et al. Repeated measures study of weekly and daily cytomegalovirus shedding patterns in saliva and urine of healthy cytomegalovirus-seropositive children. BMC Infect. Dis. 14, 569 (2014).

    Google Scholar 

  41. Kenneson, A. & Cannon, M. J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 17, 253–276 (2007). This is a detailed analysis of the epidemiology of congenital CMV infection using available literature and previously published work, and is an outstanding review of the range of disabilities and clinical manifestations of congenital infection.

    Google Scholar 

  42. Cohen, B. E., Durstenfeld, A. & Roehm, P. C. Viral causes of hearing loss: a review for hearing health professionals. Trends Hear. 18, 2331216514541361 (2014).

    Google Scholar 

  43. Schleiss, M. R. & Choo, D. I. Mechanisms of congenital cytomegalovirus-induced deafness. Drug Discov. Today Dis. Mech. 2, 105–113 (2006).

    Google Scholar 

  44. Schachtele, S. J., Mutnal, M. B., Schleiss, M. R. & Lokensgard, J. R. Cytomegalovirus-induced sensorineural hearing loss with persistent cochlear inflammation in neonatal mice. J. Neurovirol. 17, 201–211 (2011).

    Google Scholar 

  45. Bradford, R. D. et al. Murine CMV-induced hearing loss is associated with inner ear inflammation and loss of spiral ganglia neurons. PLoS Pathog. 11, e1004774 (2015).

    Google Scholar 

  46. Schraff, S. A. et al. Macrophage inflammatory proteins in cytomegalovirus-related inner ear injury. Otolaryngol. Head Neck Surg. 137, 612–618 (2007).

    Google Scholar 

  47. Schleiss, M. R. Cytomegalovirus in the neonate: immune correlates of infection and protection. Clin. Dev. Immunol. 2013, 501801 (2013).

    Google Scholar 

  48. Enders, G., Daiminger, A., Bader, U., Exler, S. & Enders, M. Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J. Clin. Virol. 52, 244–246 (2011).

    Google Scholar 

  49. Miller, E., Cradock-Watson, J. E. & Pollock, T. M. Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet 2, 781–784 (1982).

    Google Scholar 

  50. Bouthry, E. et al. Rubella and pregnancy: diagnosis, management and outcomes. Prenat. Diagn. 34, 1246–1253 (2014). This is an outstanding overview of the presentation, epidemiology and management of maternal and fetal rubella virus infection, with an excellent perspective and overview of diagnostic studies.

    Google Scholar 

  51. Sever, J. L., South, M. A. & Shaver, K. A. Delayed manifestations of congenital rubella. Rev. Infect. Dis. 7, S164–S169 (1985).

    Google Scholar 

  52. Lee, J. Y. & Bowden, D. S. Rubella virus replication and links to teratogenicity. Clin. Microbiol. Rev. 13, 571–587 (2000).

    Google Scholar 

  53. Webster, W. S. Teratogen update: congenital rubella. Teratology 58, 13–23 (1998).

    Google Scholar 

  54. Lin, H. C., Shu, M. T., Lee, K. S., Lin, H. Y. & Lin, G. Reducing false positives in newborn hearing screening program: how and why. Otol. Neurotol. 28, 788–792 (2007).

    Google Scholar 

  55. Stephens, D. in Definitions, Protocols and Guidelines in Genetic Hearing Impairment (eds Martini, A., Mazzoli, M., Read, A. & Stephens, D. ) 9–14 (Whurr Publishers, 2001).

    Google Scholar 

  56. Kemp, D. T. Otoacoustic emissions, their origin in cochlear function, and use. Br. Med. Bull. 63, 223–241 (2002).

    Google Scholar 

  57. Rance, G. & Briggs, R. J. Assessment of hearing in infants with moderate to profound impairment: the Melbourne experience with auditory steady-state evoked potential testing. Ann. Otol. Rhinol. Laryngol. Suppl. 189, 22–28 (2002).

    Google Scholar 

  58. Swanepoel, D. & Ebrahim, S. Auditory steady-state response and auditory brainstem response thresholds in children. Eur. Arch. Otorhinolaryngol. 266, 213–219 (2009).

    Google Scholar 

  59. Harlor, A. D. Jr et al. Hearing assessment in infants and children: recommendations beyond neonatal screening. Pediatrics 124, 1252–1263 (2009).

    Google Scholar 

  60. De Leenheer, E. M. et al. Etiological diagnosis in the hearing impaired newborn: proposal of a flow chart. Int. J. Pediatr. Otorhinolaryngol. 75, 27–32 (2011).

    Google Scholar 

  61. Alford, R. L. et al. American College of Medical Genetics and Genomics guideline for the clinical evaluation and etiologic diagnosis of hearing loss. Genet. Med. 16, 347–355 (2014). This paper summarizes protocols for aetiological work-up of congenital hearing loss and advocates the use of comprehensive genetic testing.

    Google Scholar 

  62. Bamiou, D. E., MacArdle, B., Bitner-Glindzicz, M. & Sirimanna, T. Aetiological investigations of hearing loss in childhood: a review. Clin. Otolaryngol. Allied Sci. 25, 98–106 (2000).

    Google Scholar 

  63. Hart, C. K. & Choo, D. I. What is the optimal workup for a child with bilateral sensorineural hearing loss? Laryngoscope 123, 809–810 (2013).

    Google Scholar 

  64. Sloan-Heggen, C. M. et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum. Genet. 135, 441–450 (2016). This paper demonstrates that comprehensive genetic testing is a foundational diagnostic test, which allows health care providers to make evidence-based decisions in the evaluation of hearing loss, thereby providing better and more cost-effective patient care.

    Google Scholar 

  65. Zong, L. et al. Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder. J. Med. Genet. 52, 523–531 (2015).

    Google Scholar 

  66. Park, A. H. et al. A diagnostic paradigm including cytomegalovirus testing for idiopathic pediatric sensorineural hearing loss. Laryngoscope 124, 2624–2629 (2014).

    Google Scholar 

  67. Boppana, S. B., Ross, S. A. & Fowler, K. B. Congenital cytomegalovirus infection: clinical outcome. Clin. Infect. Dis. 57, S178–S181 (2013).

    Google Scholar 

  68. Ville, Y. & Leruez-Ville, M. Managing infections in pregnancy. Curr. Opin. Infect. Dis. 27, 251–257 (2014).

    Google Scholar 

  69. Swanson, E. C. & Schleiss, M. R. Congenital cytomegalovirus infection: new prospects for prevention and therapy. Pediatr. Clin. North Am. 60, 335–349 (2013).

    Google Scholar 

  70. Freij, B. J., South, M. A. & Sever, J. L. Maternal rubella and the congenital rubella syndrome. Clin. Perinatol. 15, 247–257 (1988).

    Google Scholar 

  71. Nagasawa, K. et al. Congenital rubella syndrome: a case report on changes in viral load and rubella antibody titers. Pediatrics 137, e20153333 (2016).

    Google Scholar 

  72. Alvarado, J. C. et al. Synergistic effects of free radical scavengers and cochlear vasodilators: a new otoprotective strategy for age-related hearing loss. Front. Aging Neurosci. 7, 86 (2015).

    Google Scholar 

  73. Mukherjea, D. et al. Early investigational drugs for hearing loss. Expert Opin. Investig. Drugs 24, 201–217 (2015).

    Google Scholar 

  74. Chen, G., Zhang, X., Yang, F. & Mu, L. Disposition of nanoparticle-based delivery system via inner ear administration. Curr. Drug Metab. 11, 886–897 (2010).

    Google Scholar 

  75. Fitzpatrick, E. M. et al. Sign language and spoken language for children with hearing loss: a systematic review. Pediatrics 137, e20151974 (2016).

    Google Scholar 

  76. Nittrouer, S. Beyond early intervention: supporting children with CIs through elementary school. Otol. Neurotol. 37, e43–e49 (2016).

    Google Scholar 

  77. Francois, M., Boukhris, M. & Noel-Petroff, N. Schooling of hearing-impaired children and benefit of early diagnosis. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 132, 251–255 (2015).

    Google Scholar 

  78. Kimberlin, D. W. et al. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. J. Pediatr. 143, 16–25 (2003).

    Google Scholar 

  79. Kimberlin, D. W. et al. Valganciclovir for symptomatic congenital cytomegalovirus disease. N. Engl. J. Med. 372, 933–943 (2015). This landmark paper reports the results of a randomized controlled trial, which demonstrates that therapy with oral valganciclovir improves both hearing and neurodevelopmental outcomes in symptomatic congenital CMV infection.

    Google Scholar 

  80. Schleiss, M. R. Developing a vaccine against congenital cytomegalovirus (CMV) infection: what have we learned from animal models? Where should we go next? Future Virol. 8, 1161–1182 (2013).

    Google Scholar 

  81. Royackers, L., Christian, D., Frans, D. & Ermelinde, R. Hearing status in children with congenital cytomegalovirus: up-to-6-years audiological follow-up. Int. J. Pediatr. Otorhinolaryngol. 75, 376–382 (2011).

    Google Scholar 

  82. Oz, H. S. Maternal and congenital toxoplasmosis, currently available and novel therapies in horizon. Front. Microbiol. 5, 385 (2014).

    Google Scholar 

  83. Wright, R. et al. Congenital lymphocytic choriomeningitis virus syndrome: a disease that mimics congenital toxoplasmosis or cytomegalovirus infection. Pediatrics 100, E9 (1997).

    Google Scholar 

  84. Russell, K. et al. Update: interim guidance for the evaluation and management of infants with possible congenital Zika virus infection — United States, August 2016. MMWR Morb. Mortal. Wkly Rep. 65, 870–878 (2016).

    Google Scholar 

  85. McCreery, R. W., Venediktov, R. A., Coleman, J. J. & Leech, H. M. An evidence-based systematic review of amplitude compression in hearing aids for school-age children with hearing loss. Am. J. Audiol. 21, 269–294 (2012).

    Google Scholar 

  86. Xu, J. & Han, W. Improvement of adult BTE hearing aid wearers' front/back localization performance using digital pinna-cue preserving technologies: an evidence-based review. Korean J. Audiol. 18, 97–104 (2014).

    Google Scholar 

  87. Benson, K. B. Audio Engineering Handbook (McGraw-Hill, 1988).

    Google Scholar 

  88. Boothroyd, A., Springer, N., Smith, L. & Schulman, J. Amplitude compression and profound hearing loss. J. Speech Hear. Res. 31, 362–376 (1988).

    Google Scholar 

  89. Moore, B. C. Characterization and simulation of impaired hearing: implications for hearing aid design. Ear Hear. 12, 154S–161S (1991).

    Google Scholar 

  90. National Institute on Deafness and Other Communication Disorders. Charts and tables for hearing statistics. Use of hearing aids by adults with hearing loss. NIDCDhttps://www.nidcd.nih.gov/health/statistics/use-hearing-aids-adults-hearing-loss (updated 30 Sept 2014).

  91. McCormack, A. & Fortnum, H. Why do people fitted with hearing aids not wear them? Int. J. Audiol. 52, 360–368 (2013).

    Google Scholar 

  92. Spivak, L., Sokol, H., Auerbach, C. & Gershkovich, S. Newborn hearing screening follow-up: factors affecting hearing aid fitting by 6 months of age. Am. J. Audiol. 18, 24–33 (2009).

    Google Scholar 

  93. Kasic, J. F. & Fredrickson, J. M. The otologics MET ossicular stimulator. Otolaryngol. Clin. North Am. 34, 501–513 (2001).

    Google Scholar 

  94. Luers, J., Huttenbrink, K., Zahnert, T., Bornitz, M. & Beutner, D. Vibroplasty for mixed and conductive hearing. Otol. Neurotol. 34, 1005–1012 (2013).

    Google Scholar 

  95. Mueller, H. & Hall, J. Audiologists Desk Reference (Singular Publishing Group Inc., 1998).

    Google Scholar 

  96. Gaylor, J. M. et al. Cochlear implantation in adults: a systematic review and meta-analysis. JAMA Otolaryngol. Head Neck Surg. 139, 265–272 (2013).

    Google Scholar 

  97. Roland, J. T. Jr, Gantz, B. J., Waltzman, S. B., Parkinson, A. J. & Multicenter Clinical Trial Group. United States multicenter clinical trial of the cochlear nucleus hybrid implant system. Laryngoscope 126, 175–181 (2016).

    Google Scholar 

  98. Golub, J. S., Won, J. H., Drennan, W. R., Worman, T. D. & Rubinstein, J. T. Spectral and temporal measures in hybrid cochlear implant users: on the mechanism of electroacoustic hearing benefits. Otol. Neurotol. 33, 147–153 (2012).

    Google Scholar 

  99. Fitzpatrick, E. M., Ham, J. & Whittingham, J. Pediatric cochlear implantation: why do children receive implants late? Ear Hear. 36, 688–694 (2015).

    Google Scholar 

  100. Buchman, C. A. et al. Cochlear implantation in children with congenital inner ear malformations. Laryngoscope 114, 309–316 (2004).

    Google Scholar 

  101. Birman, C. S., Elliott, E. J. & Gibson, W. P. Pediatric cochlear implants: additional disabilities prevalence, risk factors, and effect on language outcomes. Otol. Neurotol. 33, 1347–1352 (2012).

    Google Scholar 

  102. Eppsteiner, R. W. et al. Prediction of cochlear implant performance by genetic mutation: the spiral ganglion hypothesis. Hear. Res. 292, 51–58 (2012).

    Google Scholar 

  103. Wu, C. C., Liu, T. C., Wang, S. H., Hsu, C. J. & Wu, C. M. Genetic characteristics in children with cochlear implants and the corresponding auditory performance. Laryngoscope 121, 1287–1293 (2011).

    Google Scholar 

  104. Usami, S. et al. Patients with CDH23 mutations and the 1555A>G mitochondrial mutation are good candidates for electric acoustic stimulation (EAS). Acta Otolaryngol. 132, 377–384 (2012).

    Google Scholar 

  105. Miyagawa, M., Nishio, S. Y. & Usami, S. A. Comprehensive study on the etiology of patients receiving cochlear implantation with special emphasis on genetic epidemiology. Otol. Neurotol. 37, e126–e134 (2016).

    Google Scholar 

  106. Cremers, C. W., Teunissen, E. & Marres, E. H. Classification of congenital aural atresia and results of reconstructive surgery. Adv. Otorhinolaryngol. 40, 9–14 (1988).

    Google Scholar 

  107. Doshi, J. & McDermott, A. L. Bone anchored hearing aids in children. Expert Rev. Med. Devices 12, 73–82 (2015).

    Google Scholar 

  108. Tjellstrom, A., Hakansson, B. & Granstrom, G. Bone-anchored hearing aids: current status in adults and children. Otolaryngol. Clin. North Am. 34, 337–364 (2001).

    Google Scholar 

  109. Kiringoda, R. & Lustig, L. A meta-analysis of the complications associated with osseointegrated hearing aids. Otol. Neurotol. 34, 790–794 (2013).

    Google Scholar 

  110. Snik, A. F. et al. Consensus statements on the BAHA system: where do we stand at present? Ann. Otol. Rhinol. Laryngol. Suppl. 195, 2–12 (2005).

    Google Scholar 

  111. Niparko, J. K., Cox, K. M. & Lustig, L. R. Comparison of the bone anchored hearing aid implantable hearing device with contralateral routing of offside signal amplification in the rehabilitation of unilateral deafness. Otol. Neurotol. 24, 73–78 (2003).

    Google Scholar 

  112. Saroul, N., Akkari, M., Pavier, Y., Gilain, L. & Mom, T. Long-term benefit and sound localization in patients with single-sided deafness rehabilitated with an osseointegrated bone-conduction device. Otol. Neurotol. 34, 111–114 (2013).

    Google Scholar 

  113. Schwager, K. Reconstruction of middle ear malformations. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 6, Doc01 (2007).

    Google Scholar 

  114. Holden-Pitt, L. & Albertorio, J. Thirty years of the Annual Survey of Deaf and Hard-of-Hearing Children and Youth: a glance over the decades. Am. Ann. Deaf 143, 72–76 (1998).

    Google Scholar 

  115. Lustig, L. R., Leake, P. A., Snyder, R. L. & Rebscher, S. J. Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation. Hear. Res. 74, 29–37 (1994).

    Google Scholar 

  116. Pimperton, H. et al. The impact of universal newborn hearing screening on long-term literacy outcomes: a prospective cohort study. Arch. Dis. Child. 101, 9–15 (2016).

    Google Scholar 

  117. Korver, A. M. et al. Newborn hearing screening versus later hearing screening and developmental outcomes in children with permanent childhood hearing impairment. JAMA 304, 1701–1708 (2010).

    Google Scholar 

  118. Varni, J. W., Seid, M. & Rode, C. A. The PedsQL: measurement model for the pediatric quality of life inventory. Med. Care 37, 126–139 (1999).

    Google Scholar 

  119. Stern-Ginossar, N. et al. Decoding human cytomegalovirus. Science 338, 1088–1093 (2012).

    Google Scholar 

  120. Soderberg-Naucler, C. Treatment of cytomegalovirus infections beyond acute disease to improve human health. Expert Rev. Anti Infect. Ther. 12, 211–222 (2014).

    Google Scholar 

  121. Cheeran, M. C., Lokensgard, J. R. & Schleiss, M. R. Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin. Microbiol. Rev. 22, 99–126 (2009).

    Google Scholar 

  122. Boppana, S. B., Fowler, K. B., Britt, W. J., Stagno, S. & Pass, R. F. Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus. Pediatrics 104, 55–60 (1999).

    Google Scholar 

  123. Ross, S. A. et al. Cytomegalovirus reinfections in healthy seroimmune women. J. Infect. Dis. 201, 386–389 (2010).

    Google Scholar 

  124. Boppana, S. B., Rivera, L. B., Fowler, K. B., Mach, M. & Britt, W. J. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N. Engl. J. Med. 344, 1366–1371 (2001).

    Google Scholar 

  125. Shearer, A. E. et al. Copy number variants are a common cause of non-syndromic hearing loss. Genome Med. 6, 37 (2014). This paper shows that copy number variants are a common cause of genetic hearing loss. Their involvement in roughly one in five genetic diagnoses mandates their identification in any clinical genetic diagnostic test for hearing loss.

    Google Scholar 

  126. Taylor, K. R. et al. AudioGene: predicting hearing loss genotypes from phenotypes to guide genetic screening. Hum. Mutat. 34, 539–545 (2013).

    Google Scholar 

  127. Nakagawa, T. Strategies for developing novel therapeutics for sensorineural hearing loss. Front. Pharmacol. 5, 206 (2014).

    Google Scholar 

  128. Shibata, S. B. & Raphael, Y. Future approaches for inner ear protection and repair. J. Commun. Disord. 43, 295–310 (2010).

    Google Scholar 

  129. Werner, M., Van De Water, T. R., Hammarsten, P., Arnoldsson, G. & Berggren, D. Morphological and morphometric characterization of direct transdifferentiation of support cells into hair cells in ototoxin-exposed neonatal utricular explants. Hear. Res. 321, 1–11 (2015).

    Google Scholar 

  130. Wan, G., Corfas, G. & Stone, J. S. Inner ear supporting cells: rethinking the silent majority. Semin. Cell Dev. Biol. 24, 448–459 (2013).

    Google Scholar 

  131. Esterberg, R. et al. Fish in a dish: drug discovery for hearing habilitation. Drug Discov. Today Dis. Models 10, e23–e29 (2013).

    Google Scholar 

  132. McCall, A. A. et al. Drug delivery for treatment of inner ear disease: current state of knowledge. EarHear. 31, 156–165 (2010).

    Google Scholar 

  133. Sidell, D. et al. Combination therapies using an intratympanic polymer gel delivery system in the guinea pig animal model: a safety study. Int. J. Pediatr. Otorhinolaryngol. 84, 132–136 (2016).

    Google Scholar 

  134. Van Kerschaver, E., Boudewyns, A. N., Declau, F., Van de Heyning, P. H. & Wuyts, F. L. Socio-demographic determinants of hearing impairment studied in 103,835 term babies. Eur. J. Public Health 23, 55–60 (2013).

    Google Scholar 

  135. Rohlfs, A. K. et al. Interdisciplinary approach to design, performance, and quality management in a multicenter newborn hearing screening project: introduction, methods, and results of the newborn hearing screening in Hamburg (part I). Eur. J. Pediatr. 169, 1353–1360 (2010).

    Google Scholar 

  136. Colgan, S. et al. The cost-effectiveness of universal newborn screening for bilateral permanent congenital hearing impairment: systematic review. Acad. Pediatr. 12, 171–180 (2012).

    Google Scholar 

  137. Gantt, S. et al. Cost-effectiveness of universal and targeted newborn screening for congenital cytomegalovirus infection. JAMA Pediatr. 170, 1173–1180 (2016). This paper demonstrates the cost-effectiveness of screening for congenital CMV infection, both in the context of universal screening programmes and in a ‘targeted’ screening approach in which infants who fail their neonatal hearing screening are specifically tested for CMV infection. This paper should help to drive the implementation of newborn screening for congenital CMV infection.

  138. Zdebik, A. A., Wangemann, P. & Jentsch, T. J. Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 24, 307–316 (2009). This is an excellent overview of inner ear structure and function, particularly with respect to the role of molecular components of the stria vascularis in endolymph production and the recycling of K+ ions.

    Google Scholar 

  139. Jagger, D. J. & Forge, A. Connexins and gap junctions in the inner ear — it's not just about K+ recycling. Cell Tissue Res. 360, 633–644 (2015).

    Google Scholar 

  140. Verhoeven, K. et al. Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat. Genet. 19, 60–62 (1998).

    Google Scholar 

  141. Schraders, M. et al. Mutations of the gene encoding otogelin are a cause of autosomal-recessive nonsyndromic moderate hearing impairment. Am. J. Hum. Genet. 91, 883–889 (2012).

    Google Scholar 

  142. Zheng, J. et al. Carcinoembryonic antigen-related cell adhesion molecule 16 interacts with alpha-tectorin and is mutated in autosomal dominant hearing loss (DFNA4). Proc. Natl Acad. Sci. USA 108, 4218–4223 (2011).

    Google Scholar 

  143. Yariz, K. O. et al. Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss. Am. J. Hum. Genet. 91, 872–882 (2012).

    Google Scholar 

  144. Grati, M. & Kachar, B. Myosin VIIa and sans localization at stereocilia upper tip-link density implicates these Usher syndrome proteins in mechanotransduction. Proc. Natl Acad. Sci. USA 108, 11476–11481 (2011).

    Google Scholar 

  145. Kazmierczak, P. et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449, 87–91 (2007).

    Google Scholar 

  146. Manor, U. et al. Regulation of stereocilia length by myosin XVa and whirlin depends on the actin-regulatory protein Eps8. Curr. Biol. 21, 167–172 (2011).

    Google Scholar 

  147. Delprat, B. et al. Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum. Mol. Genet. 14, 401–410 (2005).

    Google Scholar 

  148. Belyantseva, I. A. et al. Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat. Cell Biol. 7, 148–156 (2005).

    Google Scholar 

  149. Riazuddin, S. et al. Alterations of the CIB2 calcium- and integrin-binding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48. Nat. Genet. 44, 1265–1271 (2012).

    Google Scholar 

  150. Jentsch, T. J. Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci. 1, 21–30 (2000).

    Google Scholar 

  151. Nikolopoulos, T. P., Lioumi, D., Stamataki, S. & O'Donoghue, G. M. Evidence-based overview of ophthalmic disorders in deaf children: a literature update. Otol. Neurotol. 27, S1–S24; discussion S20 (2006).

    Google Scholar 

  152. Thiebaut, R., Leproust, S., Chene, G. & Gilbert, R. Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients' data. Lancet 369, 115–122 (2007).

    Google Scholar 

  153. Neu, N., Duchon, J. & Zachariah, P. TORCH infections. Clin. Perinatol. 42, 77–103 (2015).

    Google Scholar 

  154. Cutts, F. T. & Vynnycky, E. Modelling the incidence of congenital rubella syndrome in developing countries. Int. J. Epidemiol. 28, 1176–1184 (1999).

    Google Scholar 

  155. James, S. H. & Kimberlin, D. W. Neonatal herpes simplex virus infection: epidemiology and treatment. Clin. Perinatol. 42, 47–59 (2015).

    Google Scholar 

  156. Chau, J., Atashband, S., Chang, E., Westerberg, B. D. & Kozak, F. K. A systematic review of pediatric sensorineural hearing loss in congenital syphilis. Int. J. Pediatr. Otorhinolaryngol. 73, 787–792 (2009).

    Google Scholar 

  157. Centers for Disease Control and Prevention. Sexually transmitted disease surveillance 2013. CDChttps://www.cdc.gov/std/stats13/surv2013-print.pdf (2013).

  158. Pessoa, L. & Galvao, V. Clinical aspects of congenital syphilis with Hutchinson's triad. BMJ Case Rep. 2011, bcr1120115130 (2011).

    Google Scholar 

  159. Salviz, M., Montoya, J. G., Nadol, J. B. & Santos, F. Otopathology in congenital toxoplasmosis. Otol. Neurotol. 34, 1165–1169 (2013).

    Google Scholar 

  160. Austeng, M. E. et al. Maternal infection with Toxoplasma gondii in pregnancy and the risk of hearing loss in the offspring. Int. J. Audiol. 49, 65–68 (2010).

    Google Scholar 

  161. McLeod, R. et al. Outcome of treatment for congenital toxoplasmosis, 1981–2004: the National Collaborative Chicago-Based, Congenital Toxoplasmosis Study. Clin. Infect. Dis. 42, 1383–1394 (2006).

    Google Scholar 

  162. Yamamoto, A. Y. et al. Congenital cytomegalovirus infection as a cause of sensorineural hearing loss in a highly immune population. Pediatr. Infect. Dis. J. 30, 1043–1046 (2011).

    Google Scholar 

  163. Manicklal, S., Emery, V. C., Lazzarotto, T., Boppana, S. B. & Gupta, R. K. The “silent” global burden of congenital cytomegalovirus. Clin. Microbiol. Rev. 26, 86–102 (2013).

    Google Scholar 

  164. Westerberg, B. D., Atashband, S. & Kozak, F. K. A systematic review of the incidence of sensorineural hearing loss in neonates exposed to herpes simplex virus (HSV). Int. J. Pediatr. Otorhinolaryngol. 72, 931–937 (2008).

    Google Scholar 

  165. Phillips, J. S., Gaunt, A. & Phillips, D. R. Otosyphilis: a neglected diagnosis? Otol. Neurotol. 35, 1011–1013 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institute on Deafness and Other Communication Disorders grants RO1s DC003544, DC002842 and DC012049 to R.J.H.S. and US National Institute of Child Health and Human Development grants R01s HD044864 and HD079918 to M.R.S. M.A.K.B.-G. is supported by Great Ormond Street Hospital Children's Charity and the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London. All authors thank their colleague A. Snik for his input to earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (G.V.C. and A.N.B.), Epidemiology (A.M.H.K., M.A.K.B.-G. and M.R.S.); Mechanisms/pathophysiology (A.M.H.K., M.A.K.B.-G. and M.R.S.); Diagnosis, screening and prevention (G.V.C., S.U., A.M.H.K., M.R.S. and A.N.B.); Management (M.R.S. and L.R.L.); Quality of life (A.N.B. and A.M.H.K.); Outlook (R.J.H.S. and S.U.); Overview of the Primer (A.M.H.K. and A.N.B.).

Corresponding author

Correspondence to Anna M. H. Korver.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korver, A., Smith, R., Van Camp, G. et al. Congenital hearing loss. Nat Rev Dis Primers 3, 16094 (2017). https://doi.org/10.1038/nrdp.2016.94

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2016.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing