Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Warming the mouse to model human diseases

Key Points

  • Mice and humans prefer to live within their thermal neutral or comfort zone at which they expend the least amount of energy to maintain their core temperature

  • The normal housing temperature (ambient temperature of 20–22 °C) is within the thermal comfort zone of clothed humans but below the thermoneutral zone (ambient temperature of 30 °C) of mice

  • Housing of mice below their thermoneutral zone results in the activation of thermogenesis to maintain their core temperature

  • Mice that are housed at ambient temperatures of 20–22 °C expend twice as much energy as those at ambient temperatures of 30 °C, which results is substantial changes in their metabolic, cardiovascular and immune responses

  • Housing of mice at thermoneutrality might enable more predictive modelling of human physiology, diseases and therapeutics

Abstract

Humans prefer to live within their thermal comfort or neutral zone, which they create by making shelters, wearing clothing and, more recently, by regulating their ambient temperature. These strategies enable humans to maintain a constant core temperature (a trait that is conserved across all endotherms, including mammals and birds) with minimal energy expenditure. Although this primordial drive leads us to seek thermal comfort, we house our experimental animals, laboratory mice (Mus musculus), under conditions of thermal stress. In this Review, we discuss how housing mice below their thermoneutral zone limits our ability to model and study human diseases. Using examples from cardiovascular physiology, metabolic disorders, infections and tumour immunology, we show that certain phenotypes observed under conditions of thermal stress disappear when mice are housed at thermoneutrality, whereas others emerge that are more consistent with human biology. Thus, we propose that warming the mouse might enable more predictive modelling of human diseases and therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scholander plots of energy expenditure at different ambient temperatures for animals.
Figure 2: Effects of ambient temperature on oxygen consumption and food intake in mice.

Similar content being viewed by others

References

  1. Lovegrove, B. G. The evolution of endothermy in Cenozoic mammals: a plesiomorphic–apomorphic continuum. Biol. Rev. Camb. Philos. Soc. 87, 128–162 (2012).

    Article  PubMed  Google Scholar 

  2. Ruben, J. The evolution of endothermy in mammals and birds: from physiology to fossils. Annu. Rev. Physiol. 57, 69–95 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Bennett, A. F. & Ruben, J. A. Endothermy and activity in vertebrates. Science 206, 649–654 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Portner, H. O. Climate variability and the energetic pathways of evolution: the origin of endothermy in mammals and birds. Physiol. Biochem. Zool. 77, 959–981 (2004).

    Article  PubMed  Google Scholar 

  5. Richards, S. Temperature Regulation (Wykeham Publications, 1973).

    Book  Google Scholar 

  6. Wu, C. W. & Storey, K. B. Life in the cold: links between mammalian hibernation and longevity. Biomol. Concepts 7, 41–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Bouma, H. R. et al. Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J. Cell. Physiol. 227, 1285–1290 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Maloney, S. K., Fuller, A., Mitchell, D., Gordon, C. & Overton, J. M. Translating animal model research: does it matter that our rodents are cold? Physiology (Bethesda) 29, 413–420 (2014).

    CAS  Google Scholar 

  9. Karp, C. L. Unstressing intemperate models: how cold stress undermines mouse modeling. J. Exp. Med. 209, 1069–1074 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gordon, C. J. Thermal physiology of laboratory mice: defining thermoneutrality. J. Thermal Biol. 37, 654–685 (2012).

    Article  Google Scholar 

  11. Gordon, C. J. Temperature Regulation in Laboratory Rodents (Cambridge Univ. Press, 1993).

    Book  Google Scholar 

  12. Cannon, B. & Nedergaard, J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Thermal Biol. 214, 242–253 (2011).

    Google Scholar 

  13. Nedergaard, J. & Cannon, B. The browning of white adipose tissue: some burning issues. Cell Metab. 20, 396–407 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. David, J. M., Chatziioannou, A. F., Taschereau, R., Wang, H. & Stout, D. B. The hidden cost of housing practices: using noninvasive imaging to quantify the metabolic demands of chronic cold stress of laboratory mice. Comp. Med. 63, 386–391 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. David, J. M., Knowles, S., Lamkin, D. M. & Stout, D. B. Individually ventilated cages impose cold stress on laboratory mice: a source of systemic experimental variability. J. Am. Assoc. Lab. Anim. Sci. 52, 738–744 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lodhi, I. J. & Semenkovich, C. F. Why we should put clothes on mice. Cell Metab. 9, 111–112 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Ishikawa, M. et al. Comparison of circulating lipid profiles between fasting humans and three animal species used in preclinical studies: mice, rats and rabbits. Lipids Health Dis. 14, 104 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Glass, C. K. & Witztum, J. L. Atherosclerosis: the road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Longo, V. D. & Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23, 1048–1059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bass, J. & Lazar, M. A. Circadian time signatures of fitness and disease. Science 354, 994–999 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Hill, R. W., Muhich, T. E. & Humphries, M. M. City-scale expansion of human thermoregulatory costs. PLoS ONE 8, e76238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Erikson, H., Krog, J., Andersen, K. L. & Scholander, P. F. The critical temperature in naked man. Acta Physiol. Scand. 37, 35–39 (1956).

    Article  CAS  PubMed  Google Scholar 

  24. Scholander, P. F., Andersen, K. L., Krog, J., Lorentzen, F. V. & Steen, J. Critical temperature in Lapps. J. Appl. Physiol. 10, 231–234 (1957).

    Article  CAS  PubMed  Google Scholar 

  25. Scholander, P. F., Hammel, H. T., Andersen, K. L. & Loyning, Y. Metabolic acclimation to cold in man. J. Appl. Physiol. 12, 1–8 (1958).

    Article  CAS  PubMed  Google Scholar 

  26. Wilkerson, J. E., Raven, P. B. & Horvath, S. M. Critical temperature of unacclimatized male Caucasians. J. Appl. Physiol. 33, 451–455 (1972).

    Article  CAS  PubMed  Google Scholar 

  27. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scholander, P. F., Hock, R., Walters, V. & Irving, L. Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol. Bull. 99, 259–271 (1950).

    Article  CAS  PubMed  Google Scholar 

  29. Sampath, H. et al. Skin-specific deletion of stearoyl-CoA desaturase-1 alters skin lipid composition and protects mice from high fat diet-induced obesity. J. Biol. Chem. 284, 19961–19973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirata, M. et al. Genetic defect in phospholipase Cδ1 protects mice from obesity by regulating thermogenesis and adipogenesis. Diabetes 60, 1926–1937 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakamura, Y. et al. Phospholipase Cδ1 is required for skin stem cell lineage commitment. EMBO J. 22, 2981–2991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Narvaez, C. J., Matthews, D., Broun, E., Chan, M. & Welsh, J. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology 150, 651–661 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y. C. et al. Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc. Natl Acad. Sci. USA 94, 9831–9835 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hall, J. E. Guyton and Hall Textbook of Medical Physiology 12th edn (Saunders, 2010).

    Google Scholar 

  35. Swoap, S. J. et al. Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am. J. Physiol. Heart Circ. Physiol. 294, H1581–H1588 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Swoap, S. J., Overton, J. M. & Garber, G. Effect of ambient temperature on cardiovascular parameters in rats and mice: a comparative approach. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R391–R396 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Williams, T. D., Chambers, J. B., Henderson, R. P., Rashotte, M. E. & Overton, J. M. Cardiovascular responses to caloric restriction and thermoneutrality in C57BL/6J mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1459–R1467 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Kaiyala, K. J. et al. Acutely decreased thermoregulatory energy expenditure or decreased activity energy expenditure both acutely reduce food intake in mice. PLoS ONE 7, e41473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilson, P. W. et al. Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–1847 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Lawes, C. M., Vander Hoorn, S. & Rodgers, A. Global burden of blood-pressure-related disease, 2001. Lancet 371, 1513–1518 (2008).

    Article  PubMed  Google Scholar 

  43. Kannel, W. B. & Wolf, P. A. Framingham Study insights on the hazards of elevated blood pressure. JAMA 300, 2545–2547 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Lowell, B. B. & Spiegelman, B. M. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, X. et al. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J. Clin. Invest. 111, 399–407 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Castillo, M. et al. Disruption of thyroid hormone activation in type 2 deiodinase knockout mice causes obesity with glucose intolerance and liver steatosis only at thermoneutrality. Diabetes 60, 1082–1089 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Osborn, O. & Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Olefsky, J. & Glass, C. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 1–28 (2010).

    Article  CAS  Google Scholar 

  58. Mathis, D. Immunological goings-on in visceral adipose tissue. Cell Metab. 17, 851–859 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Odegaard, J. I. & Chawla, A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339, 172–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kraakman, M. J. et al. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab. 21, 403–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Chen, M., Liu, B., Thompson, C. H., Wittert, G. A. & Heilbronn, L. K. Acute overfeeding does not alter liver or adipose tissue-derived cytokines in healthy humans. Ann. Nutr. Metab. 69, 165–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Tam, C. S. et al. Short-term overfeeding may induce peripheral insulin resistance without altering subcutaneous adipose tissue macrophages in humans. Diabetes 59, 2164–2170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, Y. S. et al. Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 60, 2474–2483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest. 127, 1–4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tian, X. Y. et al. Thermoneutral housing accelerates metabolic inflammation to potentiate atherosclerosis but not insulin resistance. Cell Metab. 23, 165–178 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Sun, K., Tordjman, J., Clement, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18, 470–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Crewe, C., An, Y. A. & Scherer, P. E. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J. Clin. Invest. 127, 74–82 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tabas, I. & Glass, C. K. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339, 166–172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gordon, S. M. et al. A comparison of the mouse and human lipoproteome: suitability of the mouse model for studies of human lipoproteins. J. Proteome Res. 14, 2686–2695 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, Y. T. et al. Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis. 16, 12 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ross, R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Giles, D. A. et al. Modulation of ambient temperature promotes inflammation and initiates atherosclerosis in wild type C57BL/6 mice. Mol. Metab. 5, 1121–1130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Medzhitov, R. & Janeway, C. Jr. Innate immunity. N. Engl. J. Med. 343, 338–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moragues, V. & Pinkerton, H. Variation in morbidity and mortality of murine typhus infection in mice with changes in the environmental temperature. J. Exp. Med. 79, 41–43 (1944).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miraglia, G. J. & Berry, L. J. Enhancement of salmonellosis and emergence of secondary infection in mice exposed to cold. J. Bacteriol. 84, 1173–1180 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Previte, J. J. & Berry, L. J. The effect of environmental temperature on the host–parasite relationship in mice. J. Infect. Dis. 110, 201–209 (1962).

    Article  CAS  PubMed  Google Scholar 

  78. Underwood, G. E., Baker, C. A. & Weed, S. D. Protective effect of elevated temperature on mice infected with Coe virus. J. Immunol. 96, 1006–1012 (1966).

    CAS  PubMed  Google Scholar 

  79. Amrein, Y. U. Effects of environmental temperature on Trypanosoma cruzi infection in mice. J. Parasitol. 53, 1160 (1967).

    Article  CAS  PubMed  Google Scholar 

  80. Baetjer, A. M. Role of environmental temperature and humidity in susceptibility to disease. Arch. Environ. Health 16, 565–570 (1968).

    Article  CAS  PubMed  Google Scholar 

  81. Won, W. D. & Ross, H. Relationship of low temperature to mouse resistance to infection with Klebsiella pneumoniae. Aerosp. Med. 42, 642–645 (1971).

    CAS  PubMed  Google Scholar 

  82. Bell, J. F. & Moore, G. J. Effects of high ambient temperature on various stages of rabies virus infection in mice. Infect. Immun. 10, 510–515 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Romanovsky, A. A. et al. Fever and hypothermia in systemic inflammation: recent discoveries and revisions. Front. Biosci. 10, 2193–2216 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Takao, K. & Miyakawa, T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 112, 1167–1172 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Rudaya, A. Y., Steiner, A. A., Robbins, J. R., Dragic, A. S. & Romanovsky, A. A. Thermoregulatory responses to lipopolysaccharide in the mouse: dependence on the dose and ambient temperature. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1244–R1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kokolus, K. M. et al. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc. Natl Acad. Sci. USA 110, 20176–20181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Eng, J. W. et al. Housing temperature-induced stress drives therapeutic resistance in murine tumour models through β2-adrenergic receptor activation. Nat. Commun. 6, 6426 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Chawla laboratory for discussions, and A. Loh for comments on the manuscript. Work in the authors' laboratories was supported by the US National Institutes of Health (NIH; grants DK094641, DK101064 and P30DK098722 to A.C.), and K.G. was supported by a postdoctoral fellowship from the Hillblom Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K.G. and A.C. researched data for the article, contributed to discussion of the content, wrote the article and revised and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ajay Chawla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Endotherms

Organisms that use internally generated heat to maintain a constant core temperature despite changes in environmental temperature.

Core temperature

The temperature of deep body organs, which exhibits minimal fluctuation at different ambient temperatures.

Ectotherms

Organisms that primarily rely on external heat sources to regulate their core temperature, which changes with environmental temperature.

Homeothermy

The maintenance of a stable core temperature regardless of environmental conditions or temperature.

Ambient temperature

The temperature of the environment in which an animal lives.

Thermoneutral zone

The range of ambient temperatures at which sufficient heat is generated by basal metabolism to maintain core temperature within a specified range.

Thermal comfort zone

The range of ambient temperatures, and associated humidity and air movement, at which clothed humans express satisfaction with their thermal environment.

Basal metabolic rate

The energy expended by an animal during the post-absorptive rest state in its thermoneutral environment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganeshan, K., Chawla, A. Warming the mouse to model human diseases. Nat Rev Endocrinol 13, 458–465 (2017). https://doi.org/10.1038/nrendo.2017.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.48

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing