Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pattern formation: old models out on a limb

Key Points

  • Recent results from experiments in chick and mouse have challenged previous ideas of how the vertebrate limb develops.

  • Fibroblast growth factors (FGFs) are crucial signals from the apical ectodermal ridge (AER) that direct proximal–distal (Pr–D) growth of the limb.

  • FGF signalling establishes the initial limb-bud size, regulates cell viability and proliferation, and controls mesenchyme cell number to enable skeletal condensations of correct size to form.

  • Fate-mapping studies indicate that Pr–D fates are segregated and stratified in the early limb bud.

  • These studies provide new mechanisms for thinking about how the AER enables the realization of Pr–D pattern. This differs from the progress zone model, which indicates that the AER acts to maintain a 'progress zone', where Pr–D fates are progressively specified over time.

  • Genetic studies indicate that the Sonic hedgehog (Shh) signalling molecule acts through the Gli3 transcription factor to regulate the morphology of the autopod (hand/foot) by controlling the number of digits formed and their pattern.

Abstract

The vertebrate limb is an excellent model for studying fundamental aspects of embryonic development. Cell proliferation, death and movement, and the assignment and interpretation of positional information, must be coordinated if an exquisitely patterned limb is to form. Recent results from gene targeting in mice and from experimental manipulation of the chick embryonic limb have significantly altered the way in which developmental biologists have conceptualized limb patterning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling pathways in vertebrate limb development.
Figure 2: Experimental phenotypes in chick and mouse limb.
Figure 3: Graphical comparison of the progress zone and Dudley et al. models.

Similar content being viewed by others

References

  1. Saunders, J. W. Jr. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108, 363–403 (1948).

    Article  PubMed  Google Scholar 

  2. Summerbell, D. A quantitative analysis of the effect of excision of the AER from the chick limb-bud. J. Embryol. Exp. Morphol. 32, 651–660 (1974).

    CAS  PubMed  Google Scholar 

  3. Rubin, L. & Saunders, J. W. J. Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction. Dev. Biol. 28, 94–112 (1972).

    Article  CAS  PubMed  Google Scholar 

  4. Niswander, L. et al. FGF-4 replaces the apical ectodermal ridge and direct outgrowth and patterning of the limb. Cell 75, 579–587 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Fallon, J. F. et al. FGF-2: apical ectodermal ridge growth signal for chick limb development. Science 264, 104–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Sun, X., Mariani, F. V. & Martin, G. R. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418, 501–508 (2002). Conditional gene targeting of mouse Fgf4 and Fgf8 in the AER shows that these genes are required for limb development. The corresponding proteins regulate the number of limb mesenchyme cells and, in the absence of Fgf4/8, no limb forms.

    Article  CAS  PubMed  Google Scholar 

  7. Saunders, J. W. Jr & Gasseling, M. T. in Epithelial-Mesenchymal Interactions (eds Fleischmajer, R. & Billingham, R. E.) 78–97 (Williams and Wilkins, Baltimore, 1968).

    Google Scholar 

  8. Tickle, C. The number of polarizing region cells required to specify additional digits in the developing chick wing. Nature 289, 295–298 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Tickle, C. et al. Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296, 564–565 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Helms, J., Thaller, C. & Eichele, G. Relationship between retinoic acid and sonic hedgehog, two polarizing signals in the chick wing bud. Development 120, 3267–3274 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Helms, J. A. et al. Retinoic acid signaling is required during early chick limb development. Development 122, 1385–1394 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Stratford, T., Horton, C. & Maden, M. Retinoic acid is required for the initiation of outgrowth in the chick limb bud. Curr. Biol. 6, 1124–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Lu, H. -C. et al. Retinoid signaling is required for the establishment of a ZPA and for the expression of Hoxb-8, a mediator of ZPA formation. Development 124, 1643–1651 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Niederreither, K. et al. Embryonic retinoic acid synthesis is required for forelimb growth and anteroposterior patterning in the mouse. Development 129, 3563–3574 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Riddle, R. D. et al. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Chiang, C. et al. Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function. Dev. Biol. 236, 421–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Kraus, P., Fraidenraich, D. & Loomis, C. A. Some distal limb structures develop in mice lacking Sonic Hedgehog signaling. Mech. Dev. 100, 45–58 (2001). References 16 and 17 report the molecular and skeletal phenotype of Shh−/− limbs.

    Article  CAS  PubMed  Google Scholar 

  18. Ros, M. A. et al. The chick oligozeugodactyly (ozd) mutant lacks sonic hedgehog function in the limb. Development 130, 527–537 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Geduspan, J. S. & MacCabe, J. A. Transfer of dorsoventral information from mesoderm to ectoderm at the onset of limb development. Anat. Rec. 224, 79–87 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. MacCabe, J. A., Errick, J. & Saunders, J. W. Ectodermal control of the dorsoventral axis in the leg bud of the chick embryo. Dev. Biol. 39, 69–82 (1974).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, H. & Johnson, R. L. Dorsoventral patterning of the vertebrate limb: a process governed by multiple events. Cell Tissue Res. 296, 67–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Ahn, K. et al. BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal/ventral patterning of the limb. Development 128, 4449–4461 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Pizette, S., Abate-Shen, C. & Niswander, L. BMP controls proximodistal outgrowth, via induction of the apical ectodermal ridge, and dorsoventral patterning in the vertebrate limb. Development 128, 4463–4474 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Niswander, L. Interplay between the molecular signals that control vertebrate limb development. Int. J. Dev. Biol. 46, 877–881 (2002).

    CAS  PubMed  Google Scholar 

  25. Laufer, E. et al. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Niswander, L. et al. Positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Dudley, A. T., Ros, M. A. & Tabin, C. J. A re-examination of proximodistal patterning during vertebrate limb development. Nature 418, 539–544 (2002). The authors provide a fate map of the early embryonic chick limb that indicates that the Pr–D fates are stratified in the limb bud. They provide experimental evidence that cell survival and proliferation are greatly affected by removal of the AER at early and late stages, respectively.

    Article  CAS  PubMed  Google Scholar 

  28. Zúñiga, A. et al. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401, 598–602 (1999).

    Article  PubMed  Google Scholar 

  29. Pizette, S. & Niswander, L. BMPs negatively regulate structure and function of the limb apical ectodermal ridge. Development 126, 883–894 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. te Welscher, P. et al. Mutual genetic antagonism involving GLI3 and dHAND prepatterns the vertebrate limb bud mesenchyme prior to SHH signaling. Genes Dev. 16, 421–426 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parr, B. A. & McMahon, A. P. Dorsalizing signal Wnt-7a required for normal polarity of D–V and A–P axes of mouse limb. Nature 374, 350–353 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, Y. and Niswander, L. Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell 80, 939–947 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Kieny, M. Rôle inducteur du mésoderme dans la differenciation précoce du bourgeon de membre chez l'embryon de Poulet. J. Embryol. Exp. Morphol. 8, 457–467 (1960).

    CAS  PubMed  Google Scholar 

  34. Kieny, M. Variation de la capacité inductrice du mésoderme et de la competénce de l'ectoderme au cours de l'induction primaire du bourgeon de membre, chez l'embryon de Poulet. Arch. Anat. Microsc. Morphol. Exp. 57, 401–418 (1968).

    CAS  PubMed  Google Scholar 

  35. Kawakami, Y. et al. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 104, 891–900 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cohn, M. J. et al. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80, 739–746 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Min, H. et al. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 12, 3156–3161 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sekine, K. et al. Fgf10 is essential for limb and lung formation. Nature Genet. 21, 138–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Ohuchi, H. et al. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235–2244 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Kengaku, M. et al. Distinct WNT pathways regulating AER formation and dorsoventral polarity in the chick limb bud. Science 280, 1274–1277 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Summerbell, D., Lewis, J. H. & Wolpert, L. Positional information in chick limb morphogenesis. Nature 224, 492–496 (1973). The paper in which the progress zone model was proposed. According to this model, the distal (progress zone) mesenchyme undergoes progressive changes in specification from proximal to distal, under the influence of the AER.

    Article  Google Scholar 

  42. Duboule, D. Developmental biology: making progress with limb models. Nature Cell Biol. 418, 492–493 (2002).

    CAS  Google Scholar 

  43. Tickle, C. & Wolpert, L. The progress zone — alive or dead? Nature Cell Biol. 4, E216–E217 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Wolpert, L. Limb patterning: reports of model's death exaggerated. Curr. Biol. 12, R628–R630 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Janners, M. Y. & Searls, R. L. Effect of removal of the apical ectodermal ridge on the rate of cell division in the subridge mesenchyme of the embryonic chick wing. Dev. Biol. 24, 465–476 (1971).

    Article  CAS  PubMed  Google Scholar 

  46. Rowe, D. A., Cairns, J. M. & Fallon, J. F. Spatial and temporal patterns of cell death in limb bud mesoderm after apical ectodermal ridge removal. Dev. Biol. 93, 83–91 (1982).

    Article  CAS  PubMed  Google Scholar 

  47. Vargesson, N. et al. Cell fate in the chick limb bud and relationship to gene expression. Development 124, 1909–1918 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Dahn, R. D. & Fallon, J. F. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science 289, 438–441 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Lewandowski, M., Sun, X. & Martin, G. R. Fgf8 signaling from the AER is essential for normal limb development. Nature Genet. 26, 460–463 (2000).

    Article  CAS  Google Scholar 

  50. Moon, A. M. & Capecchi, M. R. Fgf8 is required for outgrowth and patterning of the limbs. Nature Genet. 26, 455–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Kieny, M. & Pautou, M. P. Régulation des excédents dans le développement du bourgeon de membre de l'embryon d'oiseau. Analyse expérimentale de combinaisons xenoplastiques caille/poulet. Wilhelm Roux Arch. Entw-Mech. Org. 179, 327–338 (1976).52.

    Article  Google Scholar 

  52. Hampé, A. Contribution a l'étude du dévelopment et de la régulation des deficiences et des excédents dans la patte de l'embryon de Poulet. Arch. Anat. Micr. Morph. Exp. 48, 345–478 (1959).

    PubMed  Google Scholar 

  53. Barasa, A. On the regulative capacity of the chick embryo limb bud. Experientia 20, 443 (1964).

    Article  CAS  PubMed  Google Scholar 

  54. Hayamizu, T. F. et al. Regeneration of HoxD expression domains during pattern regulation in chick wing buds. Dev. Biol. 161, 504–512 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Kostakopoulou, K. et al. 'Regeneration' of wing bud stumps of chick embryos and reactivation of Msx-1 and Shh expression in response to FGF-4 and ridge signals. Mech. Dev. 55, 119–131 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Janners, M. Y. & Searls, R. L. Changes in rate of cellular proliferation during the differentiation of cartilage and muscle in the mesenchyme of the embryonic chick wing. Dev. Biol. 23, 136–165 (1970).

    Article  CAS  PubMed  Google Scholar 

  57. Li, S. & Muneoka, K. Cell migration and chick limb development: chemotactic action of FGF-4 and the AER. Dev. Biol. 211, 335–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Sun, X. et al. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834–1846 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, X. et al. Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev. Cell 3, 425–437 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Wolpert, L., Tickle, C. & Sampford, M. The effect of cell killing by X-irradiation on pattern formation in the chick limb. J. Embryol. Exp. Morphol. 50, 175–198 (1979).

    CAS  PubMed  Google Scholar 

  61. Moon, A. M., Boulet, A. M. & Capecchi, M. R. Normal limb development in conditional mutants of Fgf4. Development 127, 989–996 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Sun, X. et al. Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development. Nature Genet. 25, 83–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. te Welscher, P. et al. Progression of vertebrate limb development through SHH-mediated couteraction of GLI3. Science 298, 827–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Litingtung, Y. et al. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979–983 (2002). References 63 and 64 report the analysis of limb development in mice that carry mutations in the Shh and Gli3 genes. Although Shh−/− limbs have a reduced and single zeugopod and autopod element, Shh−/− Gli3−/− limbs have many unpatterned digits. It is suggested that Shh and Gli3 act to restrict digit, forming potential and to positively control digit identity.

    Article  CAS  PubMed  Google Scholar 

  65. Tickle, C., Summerbell, D. & Wolpert, L. Positional signalling and specification of digits in chick limb morphogenesis. Nature 254, 199–202 (1975).

    Article  CAS  PubMed  Google Scholar 

  66. Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, Y. et al. Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 124, 4393–4404 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Lewis, P. M. et al. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105, 599–612 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Park, H. L. et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127, 1593–1605 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Bai, C. B. et al. Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129, 4753–4761 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Hui, C. C. & Joyner, A. L. A mouse model of grieg cephalopolysyndactyly syndrome: the extra-toes mutation contains an intragenic deletion of the Gli3 gene. Nature Genet. 3, 241–246 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Mo, R. et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124, 113–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Aoto, K. et al. Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face, and limb bud. Dev. Biol. 251, 320–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Kleinebrecht, J., Selow, J. & Winkler, W. The mouse mutant limb-deformity (ld). Anat. Anz. 152, 313–324 (1982).

    CAS  PubMed  Google Scholar 

  75. Woychik, R. P. et al. An inherited limb deformity created by insertional mutagenesis in a transgenic mouse. Nature 318, 36–40 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Qu, S. et al. Polydactyly and ecotpic ZPA formation in Alx-4 mutant mice. Development 124, 3999–4008 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Eggenschwiler, J. T., Espinoza, E. & Anderson, K. V. Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412, 194–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Hinchliffe, J. R. in Vertebrate Limb and Somite Morphogenesis (eds Ede, D. A., Hinchliffe, J. R. & Balls, M.) (Cambridge University Press, Cambridge, UK, 1977).

    Google Scholar 

  79. Altabef, M., Clarke, J. D. W. & Tickle, C. Dorso-ventral ectodermal compartments and origin of apical ectodermal ridge in developing chick limb. Development 124, 4547–4556 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Kimmel, R. A. et al. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev. 14, 1377–1389 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Charité, J., McFadden, D. G. & Olson, E. N. The bHLH transcription factor dHAND controls Sonic hedgehog expression and establishment of the zone of polarizing activity during limb development. Development 127, 2461–2470 (2000).

    Article  PubMed  Google Scholar 

  83. Martin, P. Tissue patterning in the developing mouse limb. Inf. J. Dev. Biol. 34, 323–336 (1990).

    CAS  Google Scholar 

  84. Schwabe, J. W., Rodriguez-Esteban, C. & Izpisva Belmonte, J. C. Limbs are moving: where are they going?. Trends Genet. 14, 229–235 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Ruiz i Altaba, A., Palma, V. and Dahmane, N. Hedgehog–Gli signalling and the growth of the brain. Nature Rev. Neurosci. 3, 24–33 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

Bmp2

Bmp4

Bmp7

Bmpr1a

dHand

En1

Fgf4

Fgf8

Fgf9

Fgf10

Fgf17

Gli1

Gli2

Gli3

Lmx1b

Ptc1

Wnt3a

Wnt7a

Arkdb

Shh

Glossary

MESENCHYME

Embryonic tissue that is composed of loosely organized, unpolarized cells of both mesodermal and ectodermal (for example, neural crest) origin, with a proteoglycan-rich extracellular matrix.

STYLOPOD

The proximal element of a limb that will give rise to the humerus in the forelimb and the femur in the hindlimb.

ZEUGOPOD

The intermediate elements of a limb that will give rise to the radius and ulna in the forelimb, and the tibia and fibula in the hindlimb.

AUTOPOD

The distal elements of a limb that will give rise to the wrist and the fingers in the forelimb, and the ankle and toes in the hindlimb.

CRE-LOX SYSTEM

A site-specific recombination system that is derived from the Escherichia coli bacteriophage P1. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Activation of the Cre recombinase enzyme catalyses recombination between the loxP sites, which leads to the excision of the intervening sequence.

MORPHOGEN

A diffusible signal that acts at a distance to regulate pattern formation in a dose-dependent manner.

POLYDACTYLY

Having more than the normal number of digits.

SPECIFICATION

A cell or tissue is specified to become a particular structure if, when isolated and placed in a neutral medium, it develops autonomously into that structure. Specification might still be reversed or altered following exposure to a different environment. Specification of a region need not be the same as its fate in normal development.

FATE MAP

Shows how a cell or tissue moves and what it will become during normal development, although the commitment of the cell or tissue cannot be inferred from the fate map.

DETERMINATION

Irreversible commitment of a cell or tissue. Pattern is fixed such that even if cells are exposed to different tissues or signals they will continue to develop according to their intrinsic pattern.

OLIGODACTYLY

Having fewer than normal digits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niswander, L. Pattern formation: old models out on a limb. Nat Rev Genet 4, 133–143 (2003). https://doi.org/10.1038/nrg1001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing