Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unique features of the plant life cycle and their consequences

Key Points

  • Plants lack a germline, express many genes in the haploid phase of the life cycle and have a flexible developmental plan. These features allow stringent selection in the haploid phase against deleterious mutations that could accumulate during somatic growth.

  • During reproduction, flowering plants experience two fertilization events: the egg and sperm joining to make the zygote, and a second sperm fusion with the (typically) diploid central cell to produce a triploid endosperm.

  • In most plants, the growth of the embryo depends on the nutritive support of the endosperm.

  • Parent-of-origin effects on gene expression in flowering plants are, so far, restricted to the endosperm.

  • Immediately after fertilization, maternal alleles are required for the development of normal endosperm, and, therefore, for viability of the embryo.

  • During the growth of the endosperm, paternal alleles and a correct ratio of maternal:paternal chromosomes are required to support a robust endosperm.

  • Both maternal and paternal alleles are, therefore, crucial for successful plant reproduction in the seed.

  • This conclusion is not absolute; there are many instances of the vegetative production of ectopic plantlets and apomixis (embryo development without fertilization in a seed) that illustrate that diverse plant cell types can organize to form a new individual.

Abstract

Continuous development, the absence of a germline, flexible and reversible cellular differentiation, and the existence of haploid and diploid generations — both of which express genes — are characteristics that distinguish plants from animals. Because these differences alter the impact of mutations, animals and plants experience varied selection pressures. Despite different life-cycles, both flowering plants and multicellular animals have evolved complex sensing mechanisms that act after fertilization as 'quality checks' on reproduction, and that detect chromosome dosage and the parent of origin for specific genes. Although flowering plant embryos escape such surveillance in vitro, embryo success in the seed often depends on a healthy endosperm — a nutritive tissue that is produced by a second fertilization event in which maternal and paternal gene contributions can be monitored immediately after fertilization and throughout development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of plant and animal life cycles.
Figure 2: Seedlings produced along the Kalanchoë leaf margin.
Figure 3: Relative contribution of embryo and endosperm to mature seeds.
Figure 4: Microgametophyte development and B-A chromosome behaviour.

Similar content being viewed by others

References

  1. Meyerowitz, E. M. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Gu, Z. L. et al. Role of duplicate genes in genetic robustness against null mutations. Nature 421, 63–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Mascarenhas, J. P. Gene activity during pollen development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 317–338 (1990).

    Article  Google Scholar 

  4. Mascarenhas, J. P. Pollen gene-expression — molecular evidence. Int. Rev. Cytol. 140, 3–18 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Brendel, V., Kurtz, S. & Walbot, V. Comparative genomics of Arabidopsis and maize: prospects and limitations. Genome Biol. Rev. 3, 1005.1–1005.6 (2002).

    Google Scholar 

  6. John, R. M. & Surani, M. A. Genomic imprinting, mammalian evolution, and the mystery of egg-laying mammals. Cell 101, 585–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Otto, S. P. & Marks, J. C. Mating systems and the evolutionary transition between haploidy and diploidy. Biol. J. Linn Soc. 57, 197–218 (1996).

    Article  Google Scholar 

  8. Hughes, J. S. & Otto, S. P. Ecology and the evolution of biphasic life cycles. Am. Nat. 154, 306–320 (1999).

    Article  PubMed  Google Scholar 

  9. Mable, B. K. & Otto, S. P. The evolution of life cycles with haploid and diploid phases. Bioessays 20, 453–462 (1998).

    Article  Google Scholar 

  10. Agrawal, A. F. & Chasnov, J. R. Recessive mutations and the maintenance of sex in structured populations. Genetics 158, 913–917 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raven, P. H., Evert, R. F. & Eichhorn, S. E. Biology of Plants 6th edn (Freeman & Co., New York, 1999).

    Google Scholar 

  12. Joint Genome Institute. Chlamydomonas reinhardtii v.1.0, http://genome.jgi-psf.org/chlre1/chlre1.home.html (2002).

  13. Harris, E. H. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 363–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Bonhomme, S. et al. G T-DNA mediated disruption of essential genes in Arabidopsis is unexpectedly rare and cannot be inferred from segregation distortion alone. Mol. Gen. Genet. 260, 444–452 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Desfeux, C., Clough, S. J. & Bent, A. F. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 123, 895–904 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bechtold, N. et al. The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155, 1875–1887 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coe, E. H., Neuffer, M. G. & Hoisington, D. A. in Corn and Corn Improvement (eds Sprague, G. F. & Dudley, J. W.) 81–258 (American Soc. Agronomy, Inc., Madison, Wisconsin, 1988).

    Google Scholar 

  18. Maize Gene Discovery Project. ZmDB: Maize Phenotype Database. http://www.zmdb.iastate.edu/zmdb/phenotypeDB/index.htm (2003).

  19. Patterson, E. B. in Maize Breeding and Genetics (ed. Walden, D. B.) 693–710 (Wiley and Sons, New York, 1978).

    Google Scholar 

  20. Vision, T. J., Brown, D. G. & Tanksley, S. D. The origins of genomic duplications in Arabidopsis. Science 290, 2114–2117 (2000). This article defines the extent and timing of duplication events on the basis of genomic sequence, and illustrates important principles about the genomic duplications that have been found in all flowering plants examined so far.

    Article  CAS  PubMed  Google Scholar 

  21. Blanc, G., Barakat, A., Guyot, R., Cooke, R. & Delseny, I. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12, 1093–1101 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. The Arabidopsis Genome Initiative. Nature 438, 796–815 (2000).

  23. Gaut, B. S., Le Thierry d'Ennequin, M., Peek, A. S. & Sawkins, M. C. Maize as a model for the evolution of plant nuclear genomes. Proc. Natl Acad. Sci. USA 97, 7008–7015 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science 280, 1151–1155 (2000).

    Article  Google Scholar 

  25. Gilbert, S. F. Developmental Biology 5th edn (Sinauer Associates, Inc. Sunderland, Massachusetts, 2000).

    Google Scholar 

  26. Starz-Gaiano, M. & Lehmann, R. Moving towards the next generation. Mech. Dev. 105, 5–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Hogan, B. Decisions, decisions. Nature 418, 282–283 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Weigel, D. & Jürgens, G. Stem cells that make stems. Nature 415, 751–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Simpson, G. G. & Dean, C. Flowering — Arabidopsis, the rosetta stone of flowering time? Science 296, 285–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, D. Z., Wang, G. F., Speal, B. & Ma, H. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev. 16, 2021–2031 (2002). This study addresses the important question of how pre-meiotic cells are specified in the anther, and indicates that there is a trade off between somatic and pre-germinal cell proliferation that is regulated through the kinase defined in the genetic study.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Canales, C., Bhatt, A. M., Scott, R. & Dickinson, H. EXS a putative LRR receptor kinase regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr. Biol. 12, 1718–1727 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, W. C., Ye, D., Xu, J. & Sundaresan, V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev. 13, 2108–2117 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sorensen, A., Guerineau, F., Canales-Holzeis, C., Dickinson, H. G. & Scott, R. J. A novel extinction screen in Arabidopsis thaliana identifies mutant plants defective in early microsporangial development. Plant J. 29, 581–594 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Sheridan, W. F., Golubeva, E. A., Abrhamova, L. I. & Golubovskaya, I. N. The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics 153, 933–941 (1999). A genetic and anatomical study of the consequences of the excess proliferation of germinal cells at the expense of strictly somatic cells in maize, for comparison with Zhao et al . (reference 30) who examined a parallel phenomenon in Arabidopsis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Drews, G. N. & Yadegari, R. Development and function of the angiosperm female gametophyte. Annu. Rev. Genet. 36, 99–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Klekowski, E. J., Lowenfeld, R. & Klekowski, E. H. Mangrove genetics. 4. Postzygotic mutations fixed as periclinal chimeras. Int. J. Plant Sci. 157, 398–435 (1996).

    Article  Google Scholar 

  37. Chaparro, J. X., Werner, D. J., Whetten, R. W. & O'Malley, D. M. Characterization of an unstable anthocyanin phenotype and estimation of somatic mutation-rates in peach. J. Hered. 86, 186–193 (1995).

    Article  CAS  Google Scholar 

  38. Pineda-Krch, M. & Fagerstrom, T. On the potential for evolutionary change in meristematic cell lineages through intraorganismal selection. J. Evol. Biol. 12, 681–688 (1999).

    Article  Google Scholar 

  39. Walbot, V. Sources and consequences of phenotypic and genotypic plasticity in flowering plants. Trends Plant Sci. 1, 27–32 (1996).

    Article  Google Scholar 

  40. Rideout, W. M., Eggan, K. & Jaenisch, R. Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 1093–1098 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Normark, B. B. The evolution of alternative genetic systems in insects. Annu. Rev. Entomol. 48, 397–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Crews, D. & Fitzgerald, K. T. Sexual behavior in parthenogenetic lizards (Cnemidophorus). Proc. Natl Acad. Sci. USA 77, 499–502 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chaudhury, A. M. et al. Control of early seed development. Annu. Rev. Cell Dev. Biol. 17, 677–699 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Grimanelli, D., Leblanc, O., Perotti, E. & Grossniklaus, U. Developmental genetics of gametophytic apomixes. Trends Genet. 17, 597–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. von Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J. & Filonova, L. Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult. 69, 233–249 (2002).

    Article  CAS  Google Scholar 

  46. Wan, Y., Petolino, J. F. & Widholm, J. M. Efficient production of doubled haploid plants through colchicine treatment of anther-derived maize callus. Theor. Appl. Genet. 77, 889–892 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Chase, S. S. Monoploids and diploids of maize: a comparison of genotypic equivalents. Am. J. Bot. 51, 928–933 (1964).

    Article  Google Scholar 

  48. Chase, S. S. Monoploids and monoploid derivatives of maize (Zea mays L.). Bot. Rev. 35, 117–167 (1969).

    Article  Google Scholar 

  49. Kermicle, J. L. Androgenesis conditioned by a mutation in maize. Science 166, 1422–1424 (1969).

    Article  CAS  PubMed  Google Scholar 

  50. Vinkenoog, R. & Scott, R. J. Autonomous endosperm development in flowering plants: how to overcome the imprinting problem? Sex. Plant Reprod. 14, 189–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Arditti, J. Fundamentals of Orchid Biology (Wiley, New York, 1992).

    Google Scholar 

  52. Haig, D. & Westoby, M. Parent specific gene expression and the triploid endosperm. Am Nat. 134, 147–155 (1989).

    Article  Google Scholar 

  53. Vielle-Cazada, J. -P., Baskar, R. & Grossniklaus, U. Delayed activation of the paternal genome during seed development. Nature 404, 91–94 (2000). Based on differential RT-PCR to detect maternal versus paternal transcripts of two endogenous genes, and reporter protein expression from promoter:GUS fusion genes, the authors propose that the entire paternal genome is silent for up to 2 days after fertilization.

    Article  Google Scholar 

  54. Lin, B. -Y. Association of endosperm reduction with parental imprinting in maize. Genetics 100, 475–486 (1982). This report shows that the crucial parental genome ratios that are required for normal seed development occur in the endosperm, by separately manipulating ratios in the embryo and endosperm using B-A translocations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Birchler, J. A. & Hart, J. R. Interactions of endosperm size factors in maize. Genetics 117, 307–317 (1987).

    Article  Google Scholar 

  56. Birchler, J. A. Dosage analysis of maize endosperm development. Annu. Rev. Genet. 27, 181–204 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Lin, B. -Y. Ploidy barriers to endosperm development in maize. Genetics 107, 103–115 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Haig, D. & Westoby, M. Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixes. Phil. Trans R. Soc. Lond. B 333, 1–13 (1991).

    Article  Google Scholar 

  59. Scott, R. J., Spielman, M., Bailey, J & Dickinson, H. G. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125, 3329–3341 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Kermicle, J. L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66, 69–85 (1970). The first report of an imprinted gene, and a model of the genetic analysis of parent-of-origin effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ludwig, S. R., Habera, L. F., Dellaporta, S. L. & Wessler, S. R. Lc, a member of the R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl Acad. Sci. USA 86, 7092–7096 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alleman, M. & Doctor, J. Genomic imprinting in plants: observations and evolutionary implications. Plant Mol. Biol. 43, 147–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Kermicle, J. L. & Alleman, M. Gametic imprinting in maize in relation to the angiosperm life cycle. Development (Suppl.) 9–14 (1990).

  64. Southworth, D., Strout, G. & Russell, S. D. Freeze-fracture of sperm of Plumbago zeylanica L. in pollen and in vitro. Sex. Plant Reprod. 10, 217–226 (1997).

    Article  Google Scholar 

  65. Faure, J. -E. et al. Double fertilization in maize: the two male gametes from a pollen grain have the ability to fuse with egg cells. Plant J. 33, 1051–1062 (2003).

    Article  PubMed  Google Scholar 

  66. Scholten, S., Lörz, H. & Kranz, E. Paternal mRNA and protein synthesis coincides with male chromatin decondensation in maize zygotes. Plant J. 32, 221–231 (2002). This work reports the early activation of sperm-transmitted green fluorescent protein in zygotes after in vitro fertilization.

    Article  CAS  PubMed  Google Scholar 

  67. Weijers, D., Geldner, N., Offringa, R. & Jürgens, G. Seed development: early paternal gene activity in Arabidopsis. Nature 414, 709–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Ohad, N. et al. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11, 437–415 (1999).

    Article  Google Scholar 

  69. Kiyosue, T. et al. Control of fertilization-independent endosperm development by the MEDEA polycomb gene Arabidopsis. Proc. Natl Acad. Sci. USA 96, 4186–4191 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kinoshita, T., Yadegari, R., Harada, J. J., Goldberg, R. B. & Fischer, R. L. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11, 1945–1952 (1999). More information about the expression domain and role of an important gene in the maternal control of endosperm and embryo development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grossniklaus, U., Vielle-Calzada, J. P., Hoeppner, M. A. & Gagliano, W. B. Maternal control of embryogenesis by medea, a polycomb group gene in Arabidopsis. Science 280, 446–450 (1998). First report of an imprinted gene in Arabidopsis , which, along with reference 70, begins to define the scope of parent-of-origin effects.

    Article  CAS  PubMed  Google Scholar 

  72. Vielle-Calzada, J. -P. et al. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev. 13, 2971–2982 (1999). This report lays the framework for establishing the link between DNA methylation and the setting up and maintenance of the repressive imprinting of paternal alleles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Luo, M., Bilodeau, P., Dennis, E. S., Peacock, W. J. & Chaudhury, A. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc. Natl Acad. Sci. USA 97, 10637–10642 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Choi, Y. H. et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110, 33–42 (2002). Elucidation of a gene with a product that acts on MEDEA , a gene imprinted to be expressed from maternal but not paternal alleles, in the endosperm. Expression of DEMETER in megagametophytes, but not microgametophytes, establishes conditions for the parent-of-origin effects of MEDEA.

    Article  CAS  PubMed  Google Scholar 

  75. Yadegari, R. et al. Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12, 2367–2381 (2000). Shows that the protein products of two imprinted genes interact but can be distinguished in their impact; the observations indicate considerable complexity in the regulation of parent-of-origin effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Spillane, C. et al. Interaction of the Arabidopsis Polycomb group proteins FIE and MEA mediates their common phenotypes. Curr. Biol. 10, 1535–1538 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Vinkenoog, R. et al. Hypomethylation promotes autonomous endosperm development and rescues postfertilization lethality in fie mutants. Plant Cell 12, 2271–2282 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Adams, S., Vinkenoog, R., Spielman, M., Dickinson, H. G. & Scott, R. J. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 127, 2493–2502 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Golden, T. A., et al. Short Integuments1/suspensor1/Carpel Factory, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol. 130, 808–822 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ray, S., Golden, T. & Ray, A. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev. Biol. 180, 365–369 (1997).

    Article  Google Scholar 

  81. Kinoshita, T., Harada, J. J., Goldberg, R. B. & Fischer, R. L. Polycomb repression of flowering during early plant development. Proc. Natl Acad. Sci. USA 98, 14156–14161 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bennetzen, J. L. & Kellogg, E. A. Do plants have a one-way ticket to genomic obesity? Plant Cell 9, 1509–1514 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sanmiguel, P. & Bennetzen, J. L. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals Bot. 82, 37–44 (1998).

    Article  CAS  Google Scholar 

  84. Walbot, V. & Rudenko, G. N. in Mobile DNA II (eds. Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A.) 533–564 (American Soc. Microbiology, Washington DC, 2002).

    Google Scholar 

  85. Robertson, D. S. Mutator activity in maize: timing of its activation in ontogeny. Science 218, 1515–1517 (1981).

    Article  Google Scholar 

  86. Williams, J. H. & Friedman, W. E. Identification of diploid endosperm in an early angiosperm lineage. Nature 415, 522–526 (2002).

    Article  PubMed  Google Scholar 

  87. Friedman, W. E. The evolution of double fertilization and endosperm: an 'historical' perspective. Sex. Plant Reprod. 11, 6–16 (1998).

    Article  Google Scholar 

  88. Weidinger, G. et al. Regulation of zebrafish primordial germ cell migration by attraction towards an intermediate target. Development 129, 25–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Springer, P. S., Holding, D. R., Groover, A., Yordan, C. & Martienssen, R. A. The essential Mcm7 protein PROLIFERA is localized to the nucleus of dividing cells during the G1 phase and is required maternally for early Arabidopsis development. Development 127, 1815–1822 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Baroux, C., Blanvillain, R. & Gallois, P. Paternally inherited transgenes are downregulated but retain low activity during early embryogenesis in Arabidopsis. FEBS Lett. 509, 11–16 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

MaizeGDB

ig

R

TAIR

DDM1

DME

emb30

FIE

FIS2

MEA

SIN1

FURTHER INFORMATION

Virginia Walbot's laboratory

Zea mays Database (ZmDB)

Glossary

DOUBLE FERTILIZATION

The process by which two cells in a megagametophyte fuse with two sperm (typically from the same pollen grain) to produce both a diploid embryo and an accessory organ — the endosperm. Double fertilization is characteristic of angiosperms, but also occurs in other taxa in which the result is usually the production of two embryos.

ENDOSPERM

A tissue, found in flowering plants, which is generated by the fusion of the central cell of the megagametophyte and a sperm. In most angiosperms, the endosperm is triploid, with two genome equivalents from the maternal line and one from the paternal line; however, there are many exceptions to this general rule.

AUTOTROPHIC

Able to independently acquire a nutrient.

INFLORESCENCE

The reproductive portion of a plant that bears a cluster of flowers in a specific pattern.

SOMA

The cells of the body that cannot undergo meiosis. In plants, this comprises the entire plant body until the late specification of reproductive cells in flowers. By contrast, animals have a somatic body and a germline that differentiates early in development; at reproductive maturity, the germ cells proliferate, undergo meiosis and the meiotic products differentiate into gametes.

APOMIXIS

The production of seed without embryo fertilization, which can involve direct embryogenesis from somatic cells or the development of meiotic products into embryos.

GYNOGENETIC

An individual that develops from a cell in the megagametophyte (typically the egg) and, therefore, contains only maternal chromosomes.

ANDROGENETIC

An individual that develops from a sperm and, therefore, contains only paternal chromosomes.

DICOT

A flowering plant with two embryonic initial leaves, known as cotyledons.

MONOCOT

A flowering plant with a single cotyledon in the embryo.

POLYCOMB

A class of proteins — originally described in Drosophila melanogaster — that repress the expression of the genes with which they are associated. There are several classes of polycomb proteins and in higher plants they are organized into gene families.

PHENOCOPY

A mimic of a phenotype that is caused by a known mutation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walbot, V., Evans, M. Unique features of the plant life cycle and their consequences. Nat Rev Genet 4, 369–379 (2003). https://doi.org/10.1038/nrg1064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing