Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The art and design of genetic screens: mammalian culture cells

Key Points

  • Various cellular read-outs, such as apoptosis, senescence, tissue-specific differentiation and oncogenic transformation, some of which are especially relevant for human diseases, can accurately be observed in mammalian cell lines and can best be determined in genetic screens.

  • Screens in cell lines take advantage of the Human Genome Project, with its complete annotation of all expressed genes.

  • Many reporter genes and different read-out cell systems have been used to dissect the genetic circuitries of cell culture cells for defined biochemical changes rather than gross morphological alterations.

  • Mainly forward-genetic screens were used in cell culture cells, which rely on the mutagenesis of the organisms (usually through DNA transfection), the recognition of the altered phenotype or biochemical changes and the determination of the causative DNA element.

  • Reverse-genetic screens in cell lines have also been performed, which usually comprise the random mutagenesis of known genes and their investigation in vitro.

  • Even more sophisticated genetic approaches, such as synthetic lethal screens and complementation screens, have been completed in cell lines.

  • Examples of successful screening in cell culture include the isolation of such diverse genes as oncogenes, secreted growth factors, membrane-bound receptors, transporters, transcription activators and various signal-transducing molecules.

  • The set-up of the functional assay is the pivotal step for the success of genetic screens in mammalian cells. It must be tailored to the targeted function and requires rigorous testing of the experimental setting, such as the signal background and the verification of positive controls.

  • Genome-wide genetic screens in cell lines require the massive parallel investigation of single genes, which can be accomplished by either miniaturization or automation.

  • Promising developments in the screening of cell culture cells also include high-content screening, which, rather than focusing on single biochemical changes in the cell, uses a range of powerful optical read-outs for multiple cellular targets in parallel.

Abstract

Given the wealth of sequence information from the Human Genome Project, many open reading frames urgently require assignment of function. Whereas genetic model organisms, such as yeast, Drosophila and Caenorhabditis elegans, have successfully been used in genetic screens for a long time, mammalian culture cells have only recently emerged as a suitable screening system to elucidate gene function. Diverse cellular activities, such as apoptosis, senescence, tissue-specific differentiation and oncogenic transformation, can be studied in cell culture. There is a plethora of functional assays that can provide a link between genes and physiology. The number of genetic elements to be tested necessitates the use of miniaturization strategies or robotic instrumentation for effective screens that use mammalian cell lines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible fates of mammalian cells in vitro.
Figure 2: Examples of reporter plasmids.
Figure 3: Two alternative approches to genome-wide screens in mammalian cells.

Similar content being viewed by others

References

  1. Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  2. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001). References 1 and 2 present the human genome sequence and lay out the inventory of human genes.

    Article  CAS  PubMed  Google Scholar 

  3. Eagle, H. Amino acid metabolism in human cell cultures. Science 130, 432–436 (1959).

    Article  CAS  PubMed  Google Scholar 

  4. Aravind, L., Dixit, V. M. & Koonin, E. V. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291, 1279–1284 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Horrocks, C., Halse, R., Suzuki, R. & Shepherd, P. R. Human cell systems for drug discovery. Curr. Opin. Drug Discov. Devel. 6, 570–575 (2003).

    CAS  PubMed  Google Scholar 

  6. Masters, J. R. Human cancer cell lines: fact and fantasy. Nature Rev. Mol. Cell Biol. 1, 233–236 (2000).

    Article  CAS  Google Scholar 

  7. Liu, D., Yang, X., Yang, D. & Songyang, Z. Genetic screens in mammalian cells by enhanced retroviral mutagens. Oncogene 19, 5964–5972 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Klinakis, A. G., Zagoraiou, L., Vassilatis, D. K. & Savakis, C. Genome-wide insertional mutagenesis in human cells by the Drosophila mobile element Minos. EMBO Rep. 1, 416–421 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harrington, J. J. et al. Creation of genome-wide protein expression libraries using random activation of gene expression. Nature Biotechnol. 19, 440–445 (2001).

    Article  Google Scholar 

  10. Ishida, Y. & Leder, P. RET: a poly A-trap retrovirus vector for reversible disruption and expression monitoring of genes in living cells. Nucleic Acids Res. 27, e35 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitney, M. et al. A genome-wide functional assay of signal transduction in living mammalian cells. Nature Biotechnol. 16, 1329–1333 (1998).

    Article  CAS  Google Scholar 

  12. Gudkov, A. V. & Roninson, I. B. Isolation of genetic suppressor elements (GSEs) from random fragment cDNA libraries in retroviral vectors. Methods Mol. Biol. 69, 221–240 (1997).

    CAS  PubMed  Google Scholar 

  13. Suyama, E., Kawasaki, H., Nakajima, M. & Taira, K. Identification of genes involved in cell invasion by using a library of randomized hybrid ribozymes. Proc. Natl Acad. Sci. USA 100, 5616–5621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Taylor, M. F., Wiederholt, K. & Sverdrup, F. Antisense oligonucleotides: a systematic high-throughput approach to target validation and gene function determination. Drug Discov. Today 4, 562–567 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Yonekura, H. et al. Antisense display: a new method for functional gene screen and its application to angiogenesis-related gene isolation. Ann. NY Acad. Sci. 947, 382–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Baker, E. K. et al. A genetic analysis of integrin function: glanzmann thrombasthenia in vitro. Proc. Natl Acad. Sci. USA 94, 1973–1978 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watanabe, M. et al. Molecular cloning of the human gene, CCG2, that complements the BHK-derived temperature-sensitive cell cycle mutant tsBN63: identity of CCG2 with the human X chromosomal SCAR/RPS4X gene. J. Cell Sci. 100, 35–43 (1991).

    PubMed  Google Scholar 

  19. McKendry, R. et al. High-frequency mutagenesis of human cells and characterization of a mutant unresponsive to both α and γ interferons. Proc. Natl Acad. Sci. USA 88, 11455–11459 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weissman, B. E. et al. Introduction of a normal human chromosome 11 into a Wilms' tumor cell line controls its tumorigenic expression. Science 236, 175–180 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Anderson, M. J. & Stanbridge, E. J. Tumor suppressor genes studied by cell hybridization and chromosome transfer. FASEB J. 7, 826–833 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Horvitz, H. R. & Sulston, J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96, 435–454 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  PubMed  Google Scholar 

  26. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  PubMed  Google Scholar 

  27. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Tominaga, K., Olgun, A., Smith, J. R. & Pereira-Smith, O. M. Genetics of cellular senescence. Mech. Ageing Dev. 123, 927–936 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Seed, B. Developments in expression cloning. Curr. Opin. Biotechnol. 6, 567–573 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Pennica, D. et al. Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc. Natl Acad. Sci. USA 92, 1142–1146 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, C. M., Goldstein, J. L. & Brown, M. S. cDNA cloning of MEV, a mutant protein that facilitates cellular uptake of mevalonate, and identification of the point mutation responsible for its gain of function. J. Biol. Chem. 267, 23113–23121 (1992).

    CAS  PubMed  Google Scholar 

  33. Wu, L. et al. Expression cloning and characterization of human 17 β-hydroxysteroid dehydrogenase type 2, a microsomal enzyme possessing 20 α-hydroxysteroid dehydrogenase activity. J. Biol. Chem. 268, 12964–12969 (1993).

    CAS  PubMed  Google Scholar 

  34. Dantuma, N. P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M. G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nature Biotechnol. 18, 538–543 (2000).

    Article  CAS  Google Scholar 

  35. Xu, X. et al. Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res. 26, 2034–2035 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G. & Tsien, R. Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl Acad. Sci. USA 95, 6803–6808 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simpson, J. C., Wellenreuther, R., Poustka, A., Pepperkok, R. & Wiemann, S. Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. 1, 287–292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Misawa, K. et al. A method to identify cDNAs based on localization of green fluorescent protein fusion products. Proc. Natl Acad. Sci. USA 97, 3062–3066 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, S. Y. & Elledge, S. J. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113, 881–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Gorman, C. M., Moffat, L. F. & Howard, B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell Biol. 2, 1044–1051 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zlokarnik, G. et al. Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter. Science 279, 84–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Matsuda, A. et al. Large-scale identification and characterization of human genes that activate NF-κB and MAPK signaling pathways. Oncogene 22, 3307–3318 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996). Excellent example of an inventive use of reporter plasmids.

    Article  CAS  PubMed  Google Scholar 

  44. Rossi, F., Charlton, C. A. & Blau, H. M. Monitoring protein–protein interactions in intact eukaryotic cells by β-galactosidase complementation. Proc. Natl Acad. Sci. USA 94, 8405–8410 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Remy, I. & Michnick, S. W. Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc. Natl Acad. Sci. USA 96, 5394–5399 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Remy, I. & Michnick, S. W. Visualization of biochemical networks in living cells. Proc. Natl Acad. Sci. USA 98, 7678–7683 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shioda, T., Andriole, S., Yahata, T. & Isselbacher, K. J. A green fluorescent protein-reporter mammalian two-hybrid system with extrachromosomal maintenance of a prey expression plasmid: application to interaction screening. Proc. Natl Acad. Sci. USA 97, 5220–5224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ozawa, T., Nogami, S., Sato, M., Ohya, Y. & Umezawa, Y. A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal. Chem. 72, 5151–5157 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Ozawa, T., Sako, Y., Sato, M., Kitamura, T. & Umezawa, Y. A genetic approach to identifying mitochondrial proteins. Nature Biotechnol. 21, 287–293 (2003).

    Article  CAS  Google Scholar 

  50. Waldman, T., Kinzler, K. W. & Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55, 5187–5190 (1995).

    CAS  PubMed  Google Scholar 

  51. Joza, N. et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Simonsen, H. & Lodish, H. F. Cloning by function: expression cloning in mammalian cells. Trends Pharmacolog. Sci. 15, 437–441 (1994).

    Article  CAS  Google Scholar 

  53. Dowdy, S. F. et al. Suppression of tumorigenicity in Wilms tumor by the p15.5-p14 region of chromosome 11. Science 254, 293–295 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Wong, G. G. et al. Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science 228, 810–815 (1985).

    Article  CAS  PubMed  Google Scholar 

  55. Tsai, S. F. et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 339, 446–451 (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Hoffman, B. J., Mezey, E. & Brownstein, M. J. Cloning of a serotonin transporter affected by antidepressants. Science 254, 579–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Paulmichl, M. et al. New mammalian chloride channel identified by expression cloning. Nature 356, 238–241 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Canessa, C. M. et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367, 463–467 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. D'Andrea, A. D., Lodish, H. F. & Wong, G. G. Expression cloning of the murine erythropoietin receptor. Cell 57, 277–285 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Lin, H. Y., Wang, X. F., Ng-Eaton, E., Weinberg, R. A. & Lodish, H. F. Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase. Cell 68, 775–785 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, X. F. et al. Expression cloning and characterization of the TGF-β type III receptor. Cell 67, 797–805 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297, 474–478 (1982).

    Article  CAS  PubMed  Google Scholar 

  63. Goldfarb, M., Shimizu, K., Perucho, M. & Wigler, M. Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature 296, 404–409 (1982).

    Article  CAS  PubMed  Google Scholar 

  64. Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  65. Miki, T. et al. Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 251, 72–75 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Chan, A. M. et al. Expression cDNA cloning of a serine kinase transforming gene. Oncogene 8, 1329–1333 (1993).

    CAS  PubMed  Google Scholar 

  67. Chan, A. M., Takai, S., Yamada, K. & Miki, T. Isolation of a novel oncogene, NET1, from neuroepithelioma cells by expression cDNA cloning. Oncogene 12, 1259–1266 (1996).

    CAS  PubMed  Google Scholar 

  68. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Leszczyniecka, M. et al. Identification and cloning of human polynucleotide phosphorylase, hPNPase old-35, in the context of terminal differentiation and cellular senescence. Proc. Natl Acad. Sci. USA 99, 16636–16641 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stark, G. R. & Gudkov, A. V. Forward genetics in mammalian cells: functional approaches to gene discovery. Hum. Mol. Genet. 8, 1925–1938 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Ting, A. T., Pimentel-Muinos, F. X. & Seed, B. RIP mediates tumor necrosis factor receptor 1 activation of NF-κB but not Fas/APO-1-initiated apoptosis. EMBO J. 15, 6189–6196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fenczik, C. A., Sethi, T., Ramos, J. W., Hughes, P. E. & Ginsberg, M. H. Complementation of dominant suppression implicates CD98 in integrin activation. Nature 390, 81–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Watling, D. et al. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-γ signal transduction pathway. Nature 366, 166–170 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Muller, M. et al. Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-α and-γ signal transduction pathways. EMBO J. 12, 4221–4228 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thompson, L. H., Brookman, K. W., Jones, N. J., Allen, S. A. & Carrano, A. V. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol. Cell Biol. 10, 6160–6171 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Simons, A., Dafni, N., Dotan, I., Oron, Y. & Canaani, D. Establishment of a chemical synthetic lethality screen in cultured human cells. Genome Res. 11, 266–273 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Simons, A. H., Dafni, N., Dotan, I., Oron, Y. & Canaani, D. Genetic synthetic lethality screen at the single gene level in cultured human cells. Nucleic Acids Res. 29, E100 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schmitz, M. L. & Baeuerle, P. A. The p65 subunit is responsible for the strong transcription activating potential of NF-κB. EMBO J. 10, 3805–3817 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Crameri, A., Raillard, S. A., Bermudez, E. & Stemmer, W. P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Crameri, A., Whitehorn, E. A., Tate, E. & Stemmer, W. P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnol. 14, 315–319 (1996).

    Article  CAS  Google Scholar 

  81. Leong, S. R. et al. Optimized expression and specific activity of IL-12 by directed molecular evolution. Proc. Natl Acad. Sci. USA 100, 1163–1168 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Coco, W. M. et al. Growth factor engineering by degenerate homoduplex gene family recombination. Nature Biotechnol. 20, 1246–1250 (2002).

    Article  CAS  Google Scholar 

  83. Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Stockwell, B. R. Chemical genetics: ligand-based discovery of gene function. Nature Rev. Genet. 1, 116–125 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Hauptschein, R. S., Eustace, B. K. & Jay, D. G. Global high-throughput screens for cellular function. Exp. Hematol. 30, 381–387 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Hanes, J., Schaffitzel, C., Knappik, A. & Pluckthun, A. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nature Biotechnol. 18, 1287–1292 (2000).

    Article  CAS  Google Scholar 

  88. Rajfur, Z., Roy, P., Otey, C., Romer, L. & Jacobson, K. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nature Cell Biol. 4, 286–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Marek, K. W. & Davis, G. W. Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I. Neuron 36, 805–813 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Jay, D. G. Selective destruction of protein function by chromophore-assisted laser inactivation. Proc. Natl Acad. Sci. USA 85, 5454–5458 (1988). First report of antibody-mediated knock-out using a laser.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Beck, S. et al. Fluorophore-assisted light inactivation: a high-throughput tool for direct target validation of proteins. Proteomics 2, 247–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Ziauddin, J. & Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001). Describes the establishment of genetic screening using the cell microarray technique.

    Article  CAS  PubMed  Google Scholar 

  94. Albayrak, T. & Grimm, S. A high-throughput screen for single gene activities: isolation of apoptosis inducers. Biochem. Biophys. Res. Commun. 304, 772–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Grimm, S. & Kachel, V. Robotic high-throughput assay for isolating apoptosis-inducing genes. Biotechniques 32, 670–672, 674–677 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Neudecker, F. & Grimm, S. High-throughput method for isolating plasmid DNA with reduced lipopolysaccharide content. Biotechniques 28, 107–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Bauer, M. K. A., Schubert, A., Rocks, O. & Grimm, S. Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J. Cell Biol. 147, 1493–1502 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Marzo, I. et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J. Exp. Med. 187, 1261–1271 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Albayrak, T. et al. The tumor suppressor cybL, a component of the respiratory chain, mediates apoptosis induction. Mol. Biol. Cell 14, 3082–3096 (2003). Presentation of the use of the RISCI screening method for the detection of apoptosis inducers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mund, T., Gewies, A., Schoenfeld, N., Bauer, M. K. & Grimm, S. Spike, a novel BH3-only protein, regulates apoptosis at the endoplasmic reticulum. FASEB J. 17, 696–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Schoenfeld, N., Bauer, M. K. & Grimm, S. The metastasis suppressor gene C33/CD82/KAI1 induces apoptosis through reactive oxygen intermediates. FASEB J. 18, 158–160 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Michiels, F. et al. Arrayed adenoviral expression libraries for functional screening. Nature Biotechnol. 20, 1154–1157 (2002). Shows the use of a pre-defined virus library to clone differentiation-inducing genes.

    Article  CAS  Google Scholar 

  103. Sharp, P. A. RNAi and double-strand RNA. Genes Dev. 13, 139–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Kumar, R., Conklin, D. S. & Mittal, V. High-throughput selection of effective RNAi probes for gene silencing. Genome Res. 13, 2333–2340 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mousses, S. et al. RNAi microarray analysis in cultured mammalian cells. Genome Res. 13, 2341–2347 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Aza-Blanc, P. et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell 12, 627–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Strausberg, R. L., Feingold, E. A., Klausner, R. D. & Collins, F. S. The mammalian gene collection. Science 286, 455–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2001).

    Google Scholar 

  109. Frankish, H. Consortium uses RNAi to uncover genes' function. Lancet 361, 584 (2003).

    Article  PubMed  Google Scholar 

  110. Bleicher, K. H., Bohm, H. J., Muller, K. & Alanine, A. I. Hit and lead generation: beyond high-throughput screening. Nature Rev. Drug Discov. 2, 369–378 (2003).

    Article  CAS  Google Scholar 

  111. Beske, O. E. & Goldbard, S. High-throughput cell analysis using multiplexed array technologies. Drug Discov. Today 7, S131–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Ibrahim, S. F. & van den Engh, G. High-speed cell sorting: fundamentals and recent advances. Curr. Opin. Biotechnol. 14, 5–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Chovan, T. & Guttman, A. Microfabricated devices in biotechnology and biochemical processing. Trends Biotechnol. 20, 116–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Dauty, E., Remy, J. S., Blessing, T. & Behr, J. P. Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J. Am. Chem. Soc. 123, 9227–9234 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Graham, F. L. & van der Eb, A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467 (1973).

    Article  CAS  PubMed  Google Scholar 

  117. Vaheri, A. & Pagano, J. S. Infectious poliovirus RNA: a sensitive method of assay. Virology 27, 434–436 (1965).

    Article  CAS  PubMed  Google Scholar 

  118. Wong, T. K. & Neumann, E. Electric field mediated gene transfer. Biochem. Biophys. Res. Commun. 107, 584–587 (1982).

    Article  CAS  PubMed  Google Scholar 

  119. Seed, B. & Aruffo, A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc. Natl Acad. Sci. USA 84, 3365–3369 (1987). First description of expression cloning in mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hirt, B. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26, 365–369 (1967).

    Article  CAS  PubMed  Google Scholar 

  121. Grimm, S. & Leder, P. An apoptosis-inducing isoform of neu differentiation factor (NDF) identified using a novel screen for dominant, apoptosis-inducing genes. J. Exp. Med. 185, 1137–1142 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schubert, A. & Grimm, S. Cyclophilin D, a component of the permeability transition (PT)-pore, is an apoptosis repressor. Cancer Res. 64, 85–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Untergasser, G., Koch, H. B., Menssen, A. & Hermeking, H. Characterization of epithelial senescence by serial analysis of gene expression: identification of genes potentially involved in prostate cancer. Cancer Res. 62, 6255–6262 (2002).

    CAS  PubMed  Google Scholar 

  124. Scherer, W. F., Syverton, J. T. & Gey, G. O. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J. Exp. Med. 97, 695–710 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Graham, F. L., Smiley, J., Russell, W. C. & Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74 (1977).

    Article  CAS  PubMed  Google Scholar 

  126. Soule, H. D., Vazguez, J., Long, A., Albert, S. & Brennan, M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl Cancer Inst. 51, 1409–1416 (1973).

    Article  CAS  PubMed  Google Scholar 

  127. Fogh, J., Wright, W. C. & Loveless, J. D. Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J. Natl Cancer Inst. 58, 209–214 (1977).

    Article  CAS  PubMed  Google Scholar 

  128. Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17, 16–23 (1979).

    CAS  PubMed  Google Scholar 

  129. Schneider, U., Schwenk, H. U. & Bornkamm, G. Characterization of EBV-genome negative 'null' and 'T' cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int. J. Cancer 19, 621–626 (1977).

    Article  CAS  PubMed  Google Scholar 

  130. Gluzman, Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23, 175–182 (1981).

    Article  CAS  PubMed  Google Scholar 

  131. Hopps, H. E., Bernheim, B. C., Nisalak, A., Tjio, J. H. & Smadel, J. E. Biologic characteristics of a continuous kidney cell line derived from the African green monkey. J. Immunol. 91, 416–424 (1963).

    CAS  PubMed  Google Scholar 

  132. Kao, F. T. & Puck, T. T. Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc. Natl Acad. Sci. USA 60, 1275–1281 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sanford, K. K., Earle, W. R. & Likely, G. D. The growth in vitro of single isolated tissue cells. J. Natl Cancer Inst. 9, 299–246 (1948).

    Google Scholar 

  134. Todaro, G. J. & Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17, 299–313 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Macpherson, I. & Stoker, M. Polyoma transformation of hamster cell clones — an investigation of genetic factors affecting cell competence. Virology 16, 147–151 (1962).

    Article  CAS  PubMed  Google Scholar 

  136. Jaffe, E. A., Nachman, R. L., Becker, C. G. & Minick, C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745–2756 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank H. Hermeking and A. Gewies for comments on the manuscript. The work in my laboratory was supported by Roche, the Deutsche Forschungsgemeinschaft and Bayrisches Staatsministerium. I apologize to all colleagues whose work was not cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

LocusLink

cybL/SDHC

fusin

KAI1

NET1

p21

XRCC1

OMIM

CD4

HIV

Wilms' tumour

FURTHER INFORMATION

Encyclopedia of Life Sciences

cell culture: basic procedures

genetic engineering: reporter plasmids

Human Genome Resources

Imperial College

Glossary

SENESCENCE

State in which normal cells irreversibly stop dividing.

PRIMARY CELLS

Culture cells with limited lifespan that are taken directly from an organism.

SOMATIC-CELL GENETICS

Area of genetics that deals with diploid, somatic cells and not germ-line cells.

EPISOMAL

In the context of transient transfection, it refers to a plasmid that is extra chromosomal.

FLUORESCENCE ACTIVATED CELL SORTING

(FACS). A method whereby dissociated and individual living cells are sorted, in a liquid stream, according to the intensity of fluorescence that they emit as they pass through a laser beam.

SPLICE DONOR SITES

DNA sequences that mediate splicing at the 5′ end of an intron.

NORMALIZED LIBRARY

Ensemble of genes with equal numerical representation.

SPLICING ACCEPTOR SITES

DNA elements that mediate splicing at the 3′ end of an intron.

RIBOZYMES

RNAs with catalytic activity.

COMPLEMENTATION

Restoration of the wild type by non-allelic genes that act in trans.

MICROCELLS

Vesicles formed after treatment of cells with colchemid and cytochalasin b. They contain large DNA fragments or single chromosomes that are surrounded by a nuclear and a plasma membrane.

POLYETHYLENE GLYCOL

Highly hydrated polymer that can bring cell membranes into near molecular contact by making the water between them thermodynamically unfavourable.

NEPHROBLASTOMA

Tumour of the kidney.

METASTASIS SUPPRESSOR GENES

Genes that, when inactivated, lead to metastasis formation rather than conferring a growth advantage (as with tumour-suppressor genes).

LIPOFECTION

A technique for transfecting cells that uses lipids or lipid-related carrier molecules.

FLUORESCENT RESONANCE ENERGY TRANSFER EFFECT

(FRET effect). A technique that is used to detect the closeness of fluorescent molecules.

MAMMALIAN TWO-HYBRID ASSAY

A technique that is used to detect protein–protein interactions in mammalian cells; it corresponds to the yeast two-hybrid assay, except that mammalian expression vectors are used. An intact transcription complex is generated if two fusion proteins interact: one that contains a DNA-binding domain and another that contains a transactivation domain.

COLONY-FORMATION ACTIVITY

Activity to sustain the growth of mammalian cells, as measured by the number of surviving cell colonies in vitro.

CONTACT INHIBITION

Inhibition of cell division following membrane contact of neighbouring cells, characteristic of untransformed cells.

FOCUS FORMATION

Generation of groups of transformed cells with distinctive morphology in cell cultures.

SUBTRACTION HYBRIDIZATION

A technique that is used to specifically enrich the DNA species that are present in one sample by hybridizing with nucleic acids of another sample and removing the associated double-stranded molecules.

DNA SHUFFLING

An in vitro technique that uses the artificial recombination between genes to accelerate the mutation rate to select for pre-defined qualities.

MONOPOLAR SPINDLE

Aberrant mitotic spindle arrangement that shows a monoastral microtubule array (instead of the normal bipolar spindle).

HIRTH EXTRACTION

Gentle lysis of cells that releases extrachromosomal plasmids in the supernatant.

PACKAGING CELLS

Cell lines that express one or more viral proteins and, in combination with additionally transfected components, release in trans reconstituted infectious particles.

INTRACELLULAR SECOND MESSENGER

Signalling molecule in cells the concentration of which changes on the binding of an extracellular ligand to a plasma membrane-bound receptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, S. The art and design of genetic screens: mammalian culture cells. Nat Rev Genet 5, 179–189 (2004). https://doi.org/10.1038/nrg1291

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing