Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Genomic variants in exons and introns: identifying the splicing spoilers

Abstract

When genome variants are identified in genomic DNA, especially during routine analysis of disease-associated genes, their functional implications might not be immediately evident. Distinguishing between a genomic variant that changes the phenotype and one that does not is a difficult task. An increasing amount of evidence indicates that genomic variants in both coding and non-coding sequences can have unexpected deleterious effects on the splicing of the gene transcript. So how can benign polymorphisms be distinguished from disease-associated splicing mutations?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Splicing reactions and essential splicing signals.
Figure 2: Regulatory elements in pre-mRNA splicing and GVs that can affect them.

Similar content being viewed by others

References

  1. Thude, H., Hundrieser, J., Wonigeit, K. & Schwinzer, R. A point mutation in the human CD45 gene associated with defective splicing of exon A. Eur. J. Immunol. 25, 2101–2106 (1995).

    CAS  PubMed  Google Scholar 

  2. Varani, L. et al. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl Acad. Sci. USA 96, 8229–8234 (1999).

    CAS  PubMed  Google Scholar 

  3. Ars, E. et al. Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum. Mol. Genet. 9, 237–247 (2000).

    CAS  PubMed  Google Scholar 

  4. Teraoka, S. N. et al. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am. J. Hum. Genet. 64, 1617–1631 (1999).

    CAS  PubMed  Google Scholar 

  5. Pagani, F. et al. New type of disease causing mutations: the example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum. Mol. Genet. 12, 1111–1120 (2003).

    CAS  PubMed  Google Scholar 

  6. Pagani, F. et al. A new type of mutation causes a splicing defect in ATM. Nature Genet. 30, 426–429 (2002).

    CAS  PubMed  Google Scholar 

  7. Pagani, F., Buratti, E., Stuani, C. & Baralle, F. E. Missense, nonsense and neutral mutations define juxtaposed regulatory elements of splicing in CFTR exon 9. J. Biol. Chem. 278, 26580–26588 (2003).

    CAS  PubMed  Google Scholar 

  8. Cartegni, L., Chew, S. L. & Krainer, A. R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Rev. Genet. 3, 285–298 (2002).

    CAS  PubMed  Google Scholar 

  9. Kashima, T. & Manley, J. L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nature Genet. 34, 460–463 (2003).

    CAS  PubMed  Google Scholar 

  10. Liu, H. X., Cartegni, L., Zhang, M. Q. & Krainer, A. R. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nature Genet. 27, 55–58 (2001).

    CAS  PubMed  Google Scholar 

  11. Jiang, Z. et al. Mutations in tau gene exon 10 associated with FTDP-17 alter the activity of an exonic splicing enhancer to interact with Tra2 β. J. Biol. Chem. 278, 18997–19007 (2003).

    CAS  PubMed  Google Scholar 

  12. Ishii, S., Nakao, S., Minamikawa-Tachino, R., Desnick, R. J. & Fan, J. Q. Alternative splicing in the α-galactosidase A gene: increased exon inclusion results in the Fabry cardiac phenotype. Am. J. Hum. Genet. 70, 994–1002 (2002).

    CAS  PubMed  Google Scholar 

  13. Faustino, N. A. & Cooper, T. A. Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003).

    CAS  PubMed  Google Scholar 

  14. Fernandez-Cadenas, I. et al. Splicing mosaic of the myophosphorylase gene due to a silent mutation in McArdle disease. Neurology 61, 1432–1434 (2003).

    CAS  PubMed  Google Scholar 

  15. Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    CAS  PubMed  Google Scholar 

  16. Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  17. Chillon, M. et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N. Engl. J. Med. 332, 1475–1480 (1995).

    CAS  PubMed  Google Scholar 

  18. Chu, C. S., Trapnell, B. C., Curristin, S., Cutting, G. R. & Crystal, R. G. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nature Genet. 3, 151–156 (1993).

    CAS  PubMed  Google Scholar 

  19. Larriba, S. et al. Testicular CFTR splice variants in patients with congenital absence of the vas deferens. Hum. Mol. Genet. 7, 1739–1743 (1998).

    CAS  PubMed  Google Scholar 

  20. Mak, V., Jarvi, K. A., Zielenski, J., Durie, P. & Tsui, L. C. Higher proportion of intact exon 9 CFTR mRNA in nasal epithelium compared with vas deferens. Hum. Mol. Genet. 6, 2099–2107 (1997).

    CAS  PubMed  Google Scholar 

  21. D'Souza, I. & Schellenberg, G. D. Determinants of 4-repeat tau expression. Coordination between enhancing and inhibitory splicing sequences for exon 10 inclusion. J. Biol. Chem. 275, 17700–17709 (2000).

    CAS  PubMed  Google Scholar 

  22. Zhang, M. Q. Statistical features of human exons and their flanking regions. Hum. Mol. Genet. 7, 919–932 (1998).

    CAS  PubMed  Google Scholar 

  23. Baralle, M. et al. Identification of a mutation that perturbs NF1 agene splicing using genomic DNA samples and a minigene assay. J. Med. Genet. 40, 220–222 (2003).

    CAS  PubMed  Google Scholar 

  24. Roca, X., Sachidanandam, R. & Krainer, A. R. Intrinsic differences between authentic and cryptic 5′ splice sites. Nucleic Acids Res. 31, 6321–6333 (2003).

    CAS  PubMed  Google Scholar 

  25. Matsushima, M. et al. Mutation analysis of the BRCA1 gene in 76 Japanese ovarian cancer patients: four germline mutations, but no evidence of somatic mutation. Hum. Mol. Genet. 4, 1953–1956 (1995).

    CAS  PubMed  Google Scholar 

  26. McCullough, A. J. & Berget, S. M. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol. Cell. Biol. 17, 4562–4571 (1997).

    CAS  PubMed  Google Scholar 

  27. Forch, P. et al. The apoptosis-promoting factor TIA-1 is a regulator of alternative pre- mRNA splicing. Mol. Cell 6, 1089–1098 (2000).

    CAS  PubMed  Google Scholar 

  28. Metherell, L. A. et al. Pseudoexon activation as a novel mechanism for disease resulting in atypical growth-hormone insensitivity. Am. J. Hum. Genet. 69, 641–646 (2001).

    CAS  PubMed  Google Scholar 

  29. Christie, P. T., Harding, B., Nesbit, M. A., Whyte, M. P. & Thakker, R. V. X-linked hypophosphatemia attributable to pseudoexons of the PHEX gene. J. Clin. Endocrinol. Metab. 86, 3840–3844 (2001).

    CAS  PubMed  Google Scholar 

  30. Lev-Maor, G., Sorek, R., Shomron, N. & Ast, G. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 300, 1288–1291 (2003).

    CAS  PubMed  Google Scholar 

  31. Buratti, E. et al. RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol. Cell. Biol. 24, 1387–1400 (2004).

    CAS  PubMed  Google Scholar 

  32. Muro, A. F. et al. Regulation of fibronectin EDA exon alternative splicing: possible role of RNA secondary structure for enhancer display. Mol. Cell. Biol. 19, 2657–2671 (1999).

    CAS  PubMed  Google Scholar 

  33. Shen, L. X., Basilion, J. P. & Stanton, V. P. Jr. Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proc. Natl Acad. Sci. USA 96, 7871–7876 (1999).

    CAS  PubMed  Google Scholar 

  34. Nagel, R. J., Lancaster, A. M. & Zahler, A. M. Specific binding of an exonic splicing enhancer by the pre-mRNA splicing factor SRp55. RNA 4, 11–23 (1998).

    CAS  PubMed  Google Scholar 

  35. Shi, H., Hoffman, B. E. & Lis, J. T. A specific RNA hairpin loop structure binds the RNA recognition motifs of the Drosophila SR protein B52. Mol. Cell. Biol. 17, 2649–2657 (1997).

    CAS  PubMed  Google Scholar 

  36. Damgaard, C. K., Tange, T. O. & Kjems, J. hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure. RNA 8, 1401–1415 (2002).

    CAS  PubMed  Google Scholar 

  37. Grover, A. et al. 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J. Biol. Chem. 274, 15134–15143 (1999).

    CAS  PubMed  Google Scholar 

  38. Jiang, Z., Cote, J., Kwon, J. M., Goate, A. M. & Wu, J. Y. Aberrant splicing of tau pre-mRNA caused by intronic mutations associated with the inherited dementia frontotemporal dementia with parkinsonism linked to chromosome 17. Mol. Cell. Biol. 20, 4036–4048 (2000).

    CAS  PubMed  Google Scholar 

  39. Buratti, E. et al. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 20, 1774–1784 (2001).

    CAS  PubMed  Google Scholar 

  40. Pagani, F. et al. Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element. J. Biol. Chem. 275, 21041–21047 (2000).

    CAS  PubMed  Google Scholar 

  41. Buratti, E., Brindisi, A., Pagani, F. & Baralle, F. E. Why does a variation in the number of TG repeats in CFTR intron 8 influence disease penetrance? Am. J. Hum. Genet. (in the press).

  42. Buchner, D. A., Trudeau, M. & Meisler, M. H. SCNM1, a putative RNA splicing factor that modifies disease severity in mice. Science 301, 967–969 (2003).

    CAS  PubMed  Google Scholar 

  43. Nadeau, J. H. Genetics. Modifying the message. Science 301, 927–928 (2003).

    CAS  PubMed  Google Scholar 

  44. Kearney, J. A. et al. Molecular and pathological effects of a modifier gene on deficiency of the sodium channel Scn8a (Nav1.6). Hum. Mol. Genet. 11, 2765–2775 (2002).

    CAS  PubMed  Google Scholar 

  45. Johnson, J. M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003).

    CAS  PubMed  Google Scholar 

  46. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    CAS  PubMed  Google Scholar 

  47. Proudfoot, N. J., Furger, A. & Dye, M. J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    CAS  PubMed  Google Scholar 

  48. Roberts, G. C., Gooding, C., Mak, H. Y., Proudfoot, N. J. & Smith, C. W. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res. 26, 5568–5572 (1998).

    CAS  PubMed  Google Scholar 

  49. Proudfoot, N. J. Dawdling polymerases allow introns time to splice. Nature Struct. Biol. 10, 876–878 (2003).

    CAS  PubMed  Google Scholar 

  50. Attanasio, C., David, A. & Neerman-Arbez, M. Outcome of donor splice site mutations accounting for congenital afibrinogenemia reflects order of intron removal in the fibrinogen α gene (FGA). Blood 101, 1851–1856 (2003).

    CAS  PubMed  Google Scholar 

  51. Schwarze, U., Starman, B. J. & Byers, P. H. Redefinition of exon 7 in the COL1A1 gene of type I collagen by an intron 8 splice-donor-site mutation in a form of osteogenesis imperfecta: influence of intron splice order on outcome of splice-site mutation. Am. J. Hum. Genet. 65, 336–344 (1999).

    CAS  PubMed  Google Scholar 

  52. Hoogendoorn, B. et al. Functional analysis of human promoter polymorphisms. Hum. Mol. Genet. 12, 2249–2254 (2003).

    CAS  PubMed  Google Scholar 

  53. Pagani, F., Stuani, C., Zuccato, E., Kornblihtt, A. R. & Baralle, F. E. Promoter architecture modulates CFTR exon 9 skipping. J. Biol. Chem. 278, 1511–1517 (2003).

    CAS  PubMed  Google Scholar 

  54. Cramer, P. et al. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol. Cell 4, 251–258 (1999).

    CAS  PubMed  Google Scholar 

  55. Cramer, P., Pesce, C. G., Baralle, F. E. & Kornblihtt, A. R. Functional association between promoter structure and transcript alternative splicing. Proc. Natl Acad. Sci. USA 94, 11456–11460 (1997).

    CAS  PubMed  Google Scholar 

  56. Monsalve, M. et al. Direct coupling of transcription and mRNA processing through the thermogenic co-activator PGC-1. Mol. Cell 6, 307–316 (2000).

    CAS  PubMed  Google Scholar 

  57. Zhang, C. et al. Nuclear co-activator-62 kDa/Ski-interacting protein is a nuclear matrix-associated co-activator that may couple vitamin D receptor-mediated transcription and RNA splicing. J. Biol. Chem. 278, 35325–35336 (2003).

    CAS  PubMed  Google Scholar 

  58. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    CAS  PubMed  Google Scholar 

  59. Halushka, M. K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    CAS  PubMed  Google Scholar 

  60. Fairbrother, W. G., Yeh, R. F., Sharp, P. A. & Burge, C. B. Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013 (2002).

    CAS  PubMed  Google Scholar 

  61. Cartegni, L. & Krainer, A. R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nature Genet. 30, 377–384 (2002).

    CAS  PubMed  Google Scholar 

  62. Tian, M. & Maniatis, T. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell 74, 105–114 (1993).

    CAS  PubMed  Google Scholar 

  63. Lorson, C. L. & Androphy, E. J. An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum. Mol. Genet. 9, 259–265 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Telethon Onlus Foundation, Italy, the Fondo Investimenti per la Ricerca di Base and the Associazione Italiana per la Ricerca sul Cancro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco E. Baralle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

ATM

BRCA1

CFTR

NF1

Scn8a

SMN1

SMN2

OMIM

cystic fibrosis

spinal muscular atrophy

Swiss-Prot

hnRNPA1

FURTHER INFORMATION

Cystics Fibrosis Mutation Database

Glossary

ALTERNATIVELY SPLICED ISOFORMS

RNA isoforms that are generated by alternative use of splice sites, which leads to variation in which exons are included in the mRNA and subsequently translated.

ATAXIA TELANGIECTASIA

An autosomal recessive disorder that involves cerebellar degeneration, immunodeficiency, chromosomal instability, radiosensitivity and cancer predisposition.

COMPOSITE EXONIC REGULATORY ELEMENT OF SPLICING

(CERES). Short exonic RNA sequences (5–12 bases) that contain overlapping enhancer and silencer sequences. The presence of such elements is indicated when scanning mutagenesis analyses reveal that different mutations at nearby positions or even at the same position have opposite effects on splicing efficiency.

CRYPTIC SPLICE SITES

Pseudo splice sites that are activated as a consequence of a mutation elsewhere in the gene.

EXON SKIPPING

Exclusion of an exon that is normally included in the mRNA.

EXON SPLICING ENHANCER AND EXON SPLICING SILENCER (ESE, ESS); INTRON SPLICING ENHANCER AND INTRON SPLICING SILENCER (ISE, ISS)

Sequences in the pre-mRNA that enhance or reduce the efficiency of splicing. In general, exonic enhancers or silencers are shorter (6 bases) than the intronic ones, which can be hundreds of bases long.

HETEROGENOUS NUCLEAR RIBONUCLEOPROTEIN PARTICLES

(hnRNP). A class of diverse RNA-binding proteins that associate with nascent pre-mRNA.

HYBRID MINIGENE

A simplified laboratory version of a natural gene that contains one of more of the gene's exons and introns.

NEUROFIBROMATOSIS TYPE 1

An autosomal dominant disorder that is particularly characterized by cafe-au-lait spots and fibromatous tumours of the skin.

PSEUDO EXON

A pre-mRNA sequence that resembles an exon, both in its size and the presence of flanking pseudo splice sites, but that the splicing machinery does not normally recognize.

PSEUDO SPLICE SITES

Sequences that are identical to normal splice sites but that are not normally used in splicing.

SIMPLE SEQUENCE REPEAT

A sequence that consists largely of a tandem repeat of a specific K-mer (such as (TG)11).

SITE-DIRECTED MUTAGENESIS

A method that is used to substitute a specific nucleotide into a DNA sequence.

TRANSESTERIFICATION

A reaction that breaks and makes chemical bonds (in this case, phosphodiester bonds) in a coordinated transfer so that energy is required.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagani, F., Baralle, F. Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5, 389–396 (2004). https://doi.org/10.1038/nrg1327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing