Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synergy between sequence and size in Large-scale genomics

Key Points

  • The evolution of total genome size has remained an enigma in genetics for more than half a century.

  • Recent insights from large-scale genome-sequencing projects are shedding new light on the nature, abundance and diversity of the genetic elements of which genomes are composed.

  • Authors must be cautious about overextending the applicability of sequencing data to the question of genome size, as these are, of necessity, based on only a few species with relatively small genomes.

  • Genome size is an important consideration for genome-sequencing programmes for several reasons. Genome-size variation can also influence molecular techniques that are related to sequencing, including the construction of genomic libraries and the amplification by PCR of specific genomic fragments.

  • Improved communication between genome sequencers and genome-size researchers would provide extensive mutual benefits, and could lead to the development of a more complete understanding of large-scale genome evolution.

Abstract

Until recently the study of individual DNA sequences and of total DNA content (the C-value) sat at opposite ends of the spectrum in genome biology. For gene sequencers, the vast stretches of non-coding DNA found in eukaryotic genomes were largely considered to be an annoyance, whereas genome-size researchers attributed little relevance to specific nucleotide sequences. However, the dawn of comprehensive genome sequencing has allowed a new synergy between these fields, with sequence data providing novel insights into genome-size evolution, and with genome-size data being of both practical and theoretical significance for large-scale sequence analysis. In combination, these formerly disconnected disciplines are poised to deliver a greatly improved understanding of genome structure and evolution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The relative contributions of two key components of eukaryotic genomes.
Figure 2: Using only sequenced genomes in genome-size studies can be misleading.

Similar content being viewed by others

References

  1. Boivin, A., Vendrely, R. & Vendrely, C. L'acide désoxyribonucléique du noyau cellulaire dépositaire des caractères héréditaires; arguments d'ordre analytique. C. R. Acad. Sci. 226, 1061–1063 (1948) (in French).

    CAS  Google Scholar 

  2. Mirsky, A. E. & Ris, H. The desoxyribonucleic acid content of animal cells and its evolutionary significance. J. Gen. Physiol. 34, 451–462 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomas, C. A. The genetic organization of chromosomes. Annu. Rev. Genet. 5, 237–256 (1971).

    Article  CAS  PubMed  Google Scholar 

  4. Ohno, S. in Evolution of Genetic Systems (ed. Smith, H. H.) 366–370 (Gordon and Breach, New York, 1972).

    Google Scholar 

  5. Comings, D. E. The structure and function of chromatin. Adv. Hum. Genet. 3, 237–431 (1972).

    Article  CAS  PubMed  Google Scholar 

  6. Cavalier-Smith, T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 34, 247–278 (1978).

    CAS  PubMed  Google Scholar 

  7. Gilbert, W. Why genes in pieces? Nature 271, 501 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Orgel, L. E. & Crick, F. H. C. Selfish DNA: the ultimate parasite. Nature 284, 604–607 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Gregory, T. R. in The Evolution of the Genome (ed. Gregory, T. R.) 3–87 (Elsevier, San Diego, 2005). The author provides a comprehensive recent review of the evolution of genome size in animals.

    Book  Google Scholar 

  11. Bennett, M. D. & Leitch, I. J. in The Evolution of the Genome (ed. Gregory, T. R.) 89–162 (Elsevier, San Diego, 2005). The authors provide a comprehensive recent review of the evolution of genome size in plants.

    Book  Google Scholar 

  12. Filipski, A. & Kumar, S. in The Evolution of the Genome (ed. Gregory, T. R.) 521–583 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  13. Gregory, T. R. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76, 65–101 (2001). This article outlines the key concepts in the study of the C-value enigma and the main theories that have been proposed to explain it.

    Article  CAS  PubMed  Google Scholar 

  14. Gregory, T. R. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells Mol. Dis. 27, 830–843 (2001).

    CAS  Google Scholar 

  15. Gregory, T. R. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann. Bot. 95, 133–146 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). This paper provides the first whole-scale view of the contents and characteristics of a relatively large animal genome.

  17. Kidwell, M. G. in The Evolution of the Genome (ed. Gregory, T. R.) 165–221 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  18. Kidwell, M. G. & Lisch, D. R. Transposable elements and host genome evolution. Trends Ecol. Evol. 15, 95–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kidwell, M. G. & Lisch, D. R. Transposable elements, parasitic DNA, and genome evolution. Evolution 55, 1–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Brookfield, J. F. Y. The ecology of the genome — mobile DNA elements and their hosts. Nature Rev. Genet. 6, 128–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Furano, A. V., Duvernell, D. D. & Boissinot, S. L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet. 20, 9–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Gregory, T. R. in The Evolution of the Genome (ed. Gregory, T. R.) 679–729 (Elsevier, San Diego, 2005). This chapter places emerging knowledge of genome evolution in the context of an expanded evolutionary theory, and highlights some key 'non-standard' genetic processes that have been important in various major evolutionary transitions.

    Book  Google Scholar 

  23. Brookfield, J. F. Y. Mobile DNAs: the poacher turned gamekeeper. Curr. Biol. 13, R846–R847 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Jordan, I. K., Rogozin, I. B., Glazko, G. V. & Koonin, E. V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19, 68–72 (2003). The authors suggest a significant role for formerly parasitic elements in the evolution and function of complex genomes.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, L. et al. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432, 995–1001 (2004). This article provides intriguing evidence for a link between formerly parasitic genomic elements and the evolution of the adaptive immune system of vertebrates.

    Article  CAS  PubMed  Google Scholar 

  26. Kimura, R. H., Choudary, P. V. & Schmid, C. W. Silk worm Bm1 SINE RNA increases following cellular insults. Nucleic Acids Res. 27, 3380–3387 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kidwell, M. G. Transposable elements and the evolution of genome size in eukaryotes. Genetica 115, 49–63 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. SanMiguel, P. & Bennetzen, J. L. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82 (Suppl. A), 37–44 (1998). This paper describes the extraordinary influence that transposable elements can have on the evolution of genome size, even over relatively short timescales.

    Article  CAS  Google Scholar 

  30. Bennett, E. A., Coleman, L. E., Tsui, C., Pittard, W. S. & Devine, S. E. Natural genetic variation caused by transposable elements in humans. Genetics 168, 933–951 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  32. Aparicio, S. et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Jaillon, O. et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946–957 (2004). This article provides some of the most compelling evidence so far that a complete round of genome duplication occurred in an early ancestor of the bony fishes.

    Article  PubMed  Google Scholar 

  34. Kapitonov, V. V. & Jurka, J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc. Natl Acad. Sci. USA 100, 6569–6574 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004).

  36. Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004).

  37. Kumar, A. & Bennetzen, J. L. Plant retrotransposons. Annu. Rev. Genet. 33, 479–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Xia, Q. et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306, 1937–1940 (2004).

    Article  PubMed  Google Scholar 

  39. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  40. Kim, J. M. et al. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8, 464–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Volff, J. -N., Lehrach, H., Reinhardt, R. & Chourrout, D. Retroelement dynamics and a novel type of chordate retrovirus-like element in the miniature genome of the tunicate Oikopleura dioica. Mol. Biol. Evol. 21, 2022–2033 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Katinka, M. D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Dietrich, F. S. et al. The Ashbya gosypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Galagan, J. E. et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Harrison, P. M. et al. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res. 12, 272–280 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wood, V., Gwilliam, R. & Rajandream, M. -A. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Zbodnov, E. M. et al. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298, 149–159 (2002).

    Article  CAS  Google Scholar 

  49. Petrov, D. A. Evolution of genome size: new approaches to an old problem. Trends Genet. 17, 23–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Gregory, T. R. Insertion–deletion biases and the evolution of genome size. Gene 324, 15–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Z., Carriero, N. & Gerstein, M. Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet. 20, 62–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Ochman, H., Daubin, V. & Lerat, E. A bunch of fun-guys: the whole-genome view of yeast evolution. Trends Genet. 21, 1–3 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Dujon, B. et al. Genome evolution in yeasts. Nature 430, 35–44 (2004).

    Article  PubMed  Google Scholar 

  55. Van de Peer, Y. & Meyer, A. in The Evolution of the Genome (ed. Gregory, T. R.) 329–368 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  56. Yu, J. et al. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, 267–281 (2005).

    Article  CAS  Google Scholar 

  57. Simillion, C., Vanepoele, K., Van Montagu, M. C. E., Zabeau, M. & Van de Peer, Y. The hidden duplication past of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 99, 13627–13632 (2002). The authors dicuss the ancient genome duplication that occurred in this tiny-genomed flowering plant; this evidence raises the possibility that all angiosperms have polyploidy in their ancestry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tate, J. A., Soltis, D. E. & Soltis, P. S. in The Evolution of the Genome (ed. Gregory, T. R.) 371–426 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  59. Ohno, S. Evolution by Gene Duplication (Springer, New York, 1970).

    Book  Google Scholar 

  60. McLysaght, A., Hokamp, K. & Wolfe, K. H. Extensive genomic duplication during early chordate evolution. Nature Genet. 31, 200–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Hughes, A. L. & Piontkivska, H. DNA repeat arrays in chicken and human genomes and the adaptive evolution of avian genome size. BMC Evol. Biol. 5, 12 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burt, D. W. Origin and evolution of avian minichromosomes. Cytogenet. Genome Res. 96, 97–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Gregory, T. R. A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution 56, 121–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  65. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  66. Bennett, M. D., Leitch, I. J., Price, H. J. & Johnston, J. S. Comparisons with Caenorhabditis (100 Mb) and Drosophila (175 Mb) using flow cytometry show genome size in Arabidopsis to be 157 Mb and thus 25 % larger than the Arabidopsis Genome Initiative estimate of 125 Mb. Ann. Bot. 91, 547–557 (2003). This paper demonstrates the crucial importance of using best-practice techniques in the analysis of genome size, and highlights the potential problems involved in estimating genome size by using only sequence data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hughes, A. L. Adaptive Evolution of Genes and Genomes (Oxford Univ. Press, Oxford, UK, 1999).

    Google Scholar 

  68. Vinogradov, A. E. Testing genome complexity. Science 304, 389–390 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Petrov, D. A. Mutational equilibrium model of genome size evolution. Theor. Popul. Biol. 61, 533–546 (2002).

    Article  Google Scholar 

  70. Pryer, K. M., Schneider, H., Zimmer, E. A. & Banks, J. A. Deciding among green plants for whole genome studies. Trends Plant Sci. 7, 550–554 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Evans, J. D. & Gundersen-Rindal, D. Beenomes to Bombyx: future directions in applied insect genomics. Genome Biol. 4, 107 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Garner, T. W. J. Genome size and microsatellites: the effect of nuclear size on amplification potential. Genome 45, 212–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Fay, M. F., Cowan, R. S. & Leitch, I. J. The effects of DNA content (C-value) on the quality and utility of AFLP fingerprints. Ann. Bot. 95, 237–246 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bennett, M. D. & Leitch, I. J. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann. Bot. 95, 45–90 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pennisi, E. Keeping genome databases clean and up to date. Science 286, 447–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Hadley, C. Righting the wrongs. EMBO Rep. 4, 829–831 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vilhar, B., Greilhuber, J., Koce, J. D., Temsch, E. M. & Dermastia, M. Plant genome size measurement with DNA image cytometry. Ann. Bot. 87, 719–728 (2001).

    Article  CAS  Google Scholar 

  78. Hardie, D. C., Gregory, T. R. & Hebert, P. D. N. From pixels to picograms: a beginners' guide to genome quantification by Feulgen image analysis densitometry. J. Histochem. Cytochem. 50, 735–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. DeSalle, R., Gregory, T. R. & Johnston, J. S. Preparation of samples for comparative studies of arthropod chromosomes: visualization, in situ hybridization, and genome size estimation. Meth. Enzymol. 395, 460–488 (2005).

    Article  CAS  Google Scholar 

  80. Dolezel, J. & Bartos, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95, 99–110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nóbrega, M. A., Zhu, Y., Plajzer-Frick, I., Afzal, V. & Rubin, E. M. Megabase deletions of gene deserts result in viable mice. Nature 431, 988–993 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  83. Claverie, J. -M. What if there are only 30,000 human genes? Science 291, 1255–1257 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Betrán, E. & Long, M. Expansion of genome coding regions by acquisition of new genes. Genetica 115, 65–80 (2002).

    Article  PubMed  Google Scholar 

  85. Hahn, M. W. & Wray, G. A. The G-value paradox. Evol. Dev. 4, 73–75 (2002).

    Article  PubMed  Google Scholar 

  86. Gregory, T. R. & DeSalle, R. in The Evolution of the Genome (ed. Gregory, T. R.) 585–675 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  87. Sparrow, A. H., Price, H. J. & Underbink, A. G. in Evolution of Genetic Systems (ed. Smith, H. H.) 451–494 (Gordon and Breach, New York, 1972).

    Google Scholar 

  88. Devos, K. M., Brown, J. K. M. & Bennetzen, J. L. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12, 1075–1079 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bennetzen, J. L.<, Ma, J. & Devos, K. M. Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95, 127–132 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Orel, N. & Puchta, H. Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol. Biol. 51, 523–531 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Filkowski, J., Kovalchuk, O. & Kovalchuk, I. Dissimilar mutation and recombination rates in Arabidopsis and tobacco. Plant Sci. 166, 265–272 (2004).

    Article  CAS  Google Scholar 

  92. Taylor, J. S. & Raes, J. in The Evolution of the Genome (ed. Gregory, T. R.) 289–327 (Elsevier, San Diego, 2005).

    Book  Google Scholar 

  93. Ohta, T. Population genetics of selfish DNA. Nature 292, 648–649 (1981).

    Article  CAS  PubMed  Google Scholar 

  94. Hickey, D. A. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101, 519–531 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Charlesworth, B. The population biology of transposable elements. Trends Ecol. Evol. 2, 21–23 (1987).

    Article  CAS  PubMed  Google Scholar 

  96. Charlesworth, B., Sniegowski, P. & Stephan, W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Promislow, D. E. L., Jordan, I. K. & McDonald, J. F. Genomic demography: a life-history analysis of transposable element evolution. Proc. R. Soc. Lond. B 266, 1555–1560 (1999).

    Article  CAS  Google Scholar 

  98. Arkhipova, I. & Meselson, M. Transposable elements in sexual and ancient asexual taxa. Proc. Natl Acad. Sci. USA 97, 14473–14477 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hatcher, M. J. Persistence of selfish genetic elements: population structure and conflict. Trends Ecol. Evol. 15, 271–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Schön, I. & Martens, K. Transposable elements and asexual reproduction. Trends. Evol. 15, 287–288 (2000).

    Article  Google Scholar 

  101. Wendel, J. F., Cronn, R. C., Johnston, J. S. & Price, H. J. Feast and famine in plant genomes. Genetica 115, 37–47 (2002). The authors show that genome sizes can change both by increasing and decreasing, even within a narrow taxonomic range.

    Article  CAS  PubMed  Google Scholar 

  102. Leitch, I. J., Soltis, D. E., Soltis, P. S. & Bennett, M. D. Evolution of DNA amounts across land plants (Embryophyta). Ann. Bot. 95, 207–217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thomson, K. S. An attempt to reconstruct evolutionary changes in the cellular DNA content of lungfish. J. Exp. Zool. 180, 363–372 (1972).

    Article  Google Scholar 

  104. Thomson, K. S. & Muraszko, K. Estimation of cell size and DNA content in fossil fishes and amphibians. J. Exp. Zool. 205, 315–320 (1978).

    Article  CAS  Google Scholar 

  105. Conway Morris, S. & Harper, E. Genome size in conodonts (Chordata): inferred variations during 270 million years. Science 241, 1230–1232 (1988).

    Article  Google Scholar 

  106. Masterson, J. Stomatal size in fossil plants: evidence for polyploidy in a majority of angiosperms. Science 264, 421–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Wong, G. K. -S., Passey, D. A., Huang, Y. -Z., Yang, Z. & Yu, J. Is 'junk' DNA mostly intron DNA? Genome Res. 10, 1672–1678 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wong, G. K. -S., Passey, D. A. & Yu, J. Most of the human genome is transcribed. Genome Res. 11, 1975–1977 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Vinogradov, A. E. Intron–genome size relationship on a large evolutionary scale. J. Mol. Evol. 49, 376–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Moriyama, E. N., Petrov, D. A. & Hartl, D. L. Genome size and intron size in Drosophila. Mol. Biol. Evol. 15, 770–773 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Wendel, J. F. et al. Intron size and genome size in plants. Mol. Biol. Evol. 19, 2346–2352 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sincere thanks to S. Adamowicz and two of the anonymous reviewers for providing constructive criticism on an early draft of the paper.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Animal Genome Size Database

Fungal C-values Database

GOLD–Genomes OnLine Database

Plant DNA C-values Database

The Gregory Laboratory

TIGR Comprehensive Microbial Resource

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory, T. Synergy between sequence and size in Large-scale genomics. Nat Rev Genet 6, 699–708 (2005). https://doi.org/10.1038/nrg1674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1674

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing