Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Is evolvability evolvable?

Abstract

In recent years, biologists have increasingly been asking whether the ability to evolve — the evolvability — of biological systems, itself evolves, and whether this phenomenon is the result of natural selection or a by-product of other evolutionary processes. The concept of evolvability, and the increasing theoretical and empirical literature that refers to it, may constitute one of several pillars on which an extended evolutionary synthesis will take shape during the next few years, although much work remains to be done on how evolvability comes about.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mayr, E. & Provine, W. B. The Evolutionary Synthesis. Perspectives On The Unification of Biology (Harvard Univ. Press, Cambridge, 1980).

    Book  Google Scholar 

  2. Darwin, C. The Origin Of Species By Means Of Natural Selection: Or, The Preservation Of Favored Races In The Struggle For Life (A. L. Burt (1910), New York, 1859).

    Google Scholar 

  3. Rollo, C. D. Phenotypes: Their Epigenetics, Ecology and Evolution (Chapman & Hall, New York, 1995).

    Google Scholar 

  4. Schlichting, C. D. & Pigliucci, M. Phenotypic Evolution, a Reaction Norm Perspective (Sinauer, Sunderland, 1998).

    Google Scholar 

  5. Carroll, R. L. Towards a new evolutionary synthesis. Trends Ecol. Evol. 15, 27–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, N. A. & Porter, A. H. Toward a new synthesis: population genetics and evolutionary developmental biology. Genetica 112–113, 45–58 (2001).

    Article  PubMed  Google Scholar 

  7. West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  8. Wilkins, A. S. The Evolution of Developmental Pathways (Sinauer, Sunderland, 2002).

    Google Scholar 

  9. Love, A. C. Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biol. Philos. 18, 309–345 (2003).

    Article  Google Scholar 

  10. Robert, J. S. Embryology, Epigenesis, and Evolution: Taking Development Seriously (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  11. Muller, G. B. & Newman, S. A. The innovation triad: an EvoDevo agenda. J. Exp. Zool. B Mol. Dev. Evol. 304, 487–503 (2005).

    Article  PubMed  Google Scholar 

  12. Brakefield, P. M. Evo–devo and constraints on selection. Trends Ecol. Evol. 21, 362–368 (2006).

    Article  PubMed  Google Scholar 

  13. Breuker, C. J., Debat, V. & Klingenberg, C. P. Functional evo–devo. Trends Ecol. Evol. 21, 488–492 (2006).

    Article  PubMed  Google Scholar 

  14. Rieppel, O. Turtles as hopeful monsters. BioEssays 23, 987–991 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Wagner, G. P., Amemiya, C. & Ruddle, F. Hox cluster duplications and the opportunity for evolutionary novelties. Proc. Natl Acad. Sci. USA 100, 14603–14606 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Minelli, A. & Fusco, G. Conserved versus innovative features in animal body organization. J. Exp. Zool. B Mol. Dev. Evol. 304, 520–525 (2005).

    Article  PubMed  Google Scholar 

  17. Alberch, P. From genes to phenotype: dynamical systems and evolvability. Genetica 84, 5–11 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Dawkins, R. in Artificial Life, The Proceedings Of An Interdisciplinary Workshop On The Synthesis And Simulation Of Living Systems (ed. Langton, C.) 201–220 (Addison-Wesley, Redwood City, 1989).

    Google Scholar 

  19. Schlichting, C. D. & Murren, C. J. in Plant Adaptation: Molecular Genetics and Ecology (eds Cronk, Q. C. B., Whitton, J., Ree, R. H. & Taylor, I. E. P.) 18–29 (NRC Research, Ottawa, 2004).

    Google Scholar 

  20. Fisher, R. A. The Genetical Theory Of Natural Selection (Clarendon, Oxford, 1930).

    Book  Google Scholar 

  21. Flatt, T. The evolutionary genetics of canalization. Q. Rev. Biol. 80, 287–316 (2005).

    Article  PubMed  Google Scholar 

  22. Griswold, C. K. Pleiotropic mutation, modularity and evolvability. Evol. Dev. 8, 81–93 (2006).

    Article  PubMed  Google Scholar 

  23. Houle, D. Comparing evolvability and variability of quantitative traits. Genetics 130, 195–204 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Roff, D. A. The evolution of the G. matrix: selection or drift? Heredity 84, 135–142 (2000).

    Article  PubMed  Google Scholar 

  25. Jones, A. G., Arnold, S. J. & Burger, R. The mutation matrix and the evolution of evolvability. Evolution 61, 727–745 (2007).

    Article  PubMed  Google Scholar 

  26. Pigliucci, M. & Kaplan, J. Making Sense of Evolution: Toward a Coherent Picture of Evolutionary Theory (Chicago Univ. Press, Chicago, 2006).

    Book  Google Scholar 

  27. Quayle, A. P. & Bullock, S. Modelling the evolution of genetic regulatory networks. J. Theor. Biol. 238, 737–753 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Wagner, G. P. & Altenberg, L. Complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).

    Article  PubMed  Google Scholar 

  29. Camara, M. & Pigliucci, M. Mutational contributions to genetic variance/covariance matrices: an experimental approach using induced mutations in Arabidopsis thaliana. Evolution 53, 1692–1703 (1999).

    Article  PubMed  Google Scholar 

  30. West-Eberhard, M. J. Evolution in the light of developmental and cell biology, and vice versa. Proc. Natl Acad. Sci. USA 95, 8417–8419 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dichtel-Danjoy, M.-L. & Felix, M.-A. Phenotypic neighborhood and micro-evolvability. Trends Genet. 20, 268–276 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Hansen, T. F. The evolution of genetic architecture. Annu. Rev. Ecol. Syst. 37, 123–157 (2006).

    Article  Google Scholar 

  33. Brookfield, J. F. Y. The evolvability enigma. Curr. Biol. 11, R106–R108 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Maynard-Smith, J. & Szathmary, E. The Major Transitions in Evolution (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  35. Lozada-Chavez, I., Janga, S. C. & Collado-Vides, J. Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res. 34, 3434–3445 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanay, A., Regev, A. & Shamir, R. Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. Proc. Natl Acad. Sci. USA 102, 7203–7208 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ciliberti, S., Martin, O. C. & Wagner, A. Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Comput. Biol. 3, e15 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bergman, A. & Siegal, M. L. Evolutionary capacitance as a general feature of complex gene networks. Nature 424, 549–552 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Gould, S. J. The evolutionary biology of constraint. Daedalus 109, 39–52 (1980).

    Google Scholar 

  40. Maynard-Smith, J. et al. Developmental constraints and evolution. Q. Rev. Biol. 60, 265–287 (1985).

    Article  Google Scholar 

  41. Wagner, A. Robustness and Evolvability in Living Systems (Princeton Univ. Press, Princeton, 2005).

    Google Scholar 

  42. Hey, J. The neutralist, the fly and the selectionist. Trends Ecol. Evol. 14, 35–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Montville, R., Froissart, R., Remold, S. K., Tenaillon, O. & Turner, P. E. Evolution of mutational robustness in an RNA virus. PLoS Biol. 3, e381 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ancel Meyers, L., Ancel, F. D. & Lachmann, M. Evolution of genetic potential. PLoS Comput. Biol. 1, e32 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  45. de Visser, J. A. G. M. et al. Evolution and detection of genetic robustess. Evolution 57, 1959–1972 (2003).

    PubMed  Google Scholar 

  46. Landry, C. R., Lemos, B., Rifkin, S. A., Dickinson, W. J. & Hartl, D. L. Genetic properties influencing the evolvability of gene expression. Science 316, 1126 (2007).

    Article  Google Scholar 

  47. Adami, C. Digital genetics: unravelling the genetic basis of evolution. Nature Genet. 7, 109–118 (2006).

    Article  CAS  Google Scholar 

  48. Eigen, M. Self-organization of matter and evolution of biological macromolecules. Naturwissenschaften 58, 465 (1971).

    Article  CAS  PubMed  Google Scholar 

  49. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hansen, T. F. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69, 83–94 (2003).

    Article  PubMed  Google Scholar 

  51. Carter, A. J. R., Hermisson, J. & Hansen, T. F. The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theor. Popul. Biol. 68, 179–196 (2005).

    Article  PubMed  Google Scholar 

  52. Budd, G. E. On the origin and evolution of major morphological characters. Biol. Rev. 81, 609–628 (2006).

    Article  PubMed  Google Scholar 

  53. Misevic, D., Ofria, C. & Lenski, R. E. Sexual reproduction reshapes the genetic architecture of digital organisms. Proc. R. Soc. B Biol. Sci. 273, 457–464 (2006).

    Article  Google Scholar 

  54. de Visser, J. A. G. M. & Elena, S. F. The evolution of sex: empirical insights into the role of epistasis and drift. Nature Rev. Genet. 8, 139–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Hendrikse, J. L., Parsons, T. E. & Hallgrimsson, B. Evolvability as the proper focus of evolutionary developmental biology. Evol. Dev. 9, 393–401 (2007).

    Article  PubMed  Google Scholar 

  56. Conrad, M. The geometry of evolution. Biosystems 24, 61–81 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Gavrilets, S. A dynamical theory of speciation on holey adaptive landscapes. Am. Nat. 154, 1–22 (1999).

    Article  PubMed  Google Scholar 

  58. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Harrison, F. & Buckling, A. High relatedness selects against hypermutability in bacterial metapopulations. Proc. R. Soc. B Biol. Sci. 274, 1341–1347 (2007).

    Article  Google Scholar 

  60. Schoustra, S. E., Debets, A. J. M., Slakhorst, M. & Hoekstra, R. F. Mitotic recombination accelerates adaptation in the fungus Aspergillus nidulans. PLoS Genet. 3, e68 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nijhout, H. F. & Emlen, D. J. Competition among body parts in the development and evolution of insect morphology. Proc. Natl Acad. Sci. USA 95, 3685–3689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Earl, D. J. & Deem, M. W. Evolvability is a selectable trait. Proc. Natl Acad. Sci. USA 101, 11531–11536 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. London B Biol. Sci. 205, 581–598 (1979).

    Article  CAS  Google Scholar 

  64. Pigliucci, M. & Kaplan, J. The fall and rise of Dr. Pangloss: adaptationism and the Spandrels paper 20 years later. Trends Ecol. Evol. 15, 66–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Williams, G. C. Adaptation and Natural Selection: a Critique of Some Current Evolutionary Thought (Princeton Univ. Press, Princeton, 1966).

    Google Scholar 

  66. Ariew, A., Cummings, R. & Perlman, M. (eds) Functions: New Essays in the Philosophy of Psychology and Biology (Oxford Univ. Press, New York, 2002).

    Google Scholar 

  67. Mayr, E. The idea of teleology. J. Hist. Ideas 53, 117–135 (1992).

    Article  Google Scholar 

  68. Sniegowski, P. D., Gerrish, P. J., Johnson, T. & Shaver, A. The evolution of mutation rates: separating causes from consequences. Bioessays 22, 1057–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Bell, G. The evolution of evolution. Heredity 94, 1–2 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Wagner, G. P. & Burger, R. On the evolution of dominance modifiers. 2. A nonequilibrium approach to the evolution of genetic systems. J. Theor. Biol. 113, 475–500 (1985).

    Article  CAS  PubMed  Google Scholar 

  72. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Sollars, V. et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genet. 33, 70–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Masel, J. Evolutionary capacitance may be favored by natural selection. Genetics 170, 1359–1371 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Partridge, L. & Barton, N. H. Evolving evolvability. Nature 407, 457–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Sniegowski, P. D. & Murphy, H. A. Evolvability. Curr. Biol. 16, R831–R834 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Leroi, A. M. The scale independence of evolution. Evol. Dev. 2, 67–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Price, G. R. Selection and covariance. Nature 277, 520–521 (1970).

    Article  Google Scholar 

  81. Williams, G. C. Natural Selection: Domains, Levels and Challenges (Oxford Univ. Press, New York, 1992).

    Google Scholar 

  82. Keller, L. (ed.) Levels of Selection in Evolution (Princeton Univ. Press, Princeton, 1999).

    Google Scholar 

  83. Sober, E. & Wilson, D. S. Unto Others: the Evolution and Psychology of Unselfish Behavior (Harvard Univ. Press, Cambridge, 1998).

    Google Scholar 

  84. Wade, M. J. Opposing levels of selection can cause neutrality: mating patterns and maternal–fetal interactions. Evolution 54, 290–292 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Kleene, K. C. Sexual selection, genetic conflict, selfish genes, and the atypical patterns of gene expression in spermatogenic cells. Dev. Biol. 277, 16–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Okasha, S. Multilevel selection and the major transitions in evolution. Philos. Sci. 72, 1013–1025 (2005).

    Article  Google Scholar 

  87. Stanley, S. M. A theory of evolution above the species level. Proc. Natl Acad. Sci. USA 72, 646–650 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Eldredge, N. & Gould, S. J. in Models In Paleobiology (ed. Schopf, T. J. M.) 82–115 (Freeman, Cooper and Co., San Francisco, 1972).

    Google Scholar 

  89. Gould, S. J. & Vrba, E. S. Exaptation — a missing term in the science of form. Paleobiology 8, 4–15 (1982).

    Article  Google Scholar 

  90. Kaplan, J. & Pigliucci, M. Genes 'for' phenotypes: a modern history view. Biol. Philos. 16, 189–213 (2001).

    Article  Google Scholar 

  91. Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Martins, E. P., Diniz-Filho, J. A. F. & Hoursworth, E. A. Adaptive constraints and the phylogenetic comparative method: a computer simulation test. Evolution 56, 1–13 (2002).

    Article  PubMed  Google Scholar 

  93. Pigliucci, M. Do we need an extended evolutionary synthesis? Evolution (in the press).

  94. Jablonka, E. & Lamb, M. J. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life (MIT Press, Cambridge, 2005).

    Google Scholar 

  95. Lynch, M. The Origins of Genome Architecture (Sinauer, Sunderland, 2007).

    Google Scholar 

  96. Lewontin, R. C. The analysis of variance and the analysis of causes. Am. J. Hum. Genet. 26, 400–411 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1932).

    Google Scholar 

  98. Coyne, J. A., Barton, N. H. & Turelli, M. A critique of Sewall Wright's shifting balance theory of evolution. Evolution 51, 643–671 (1997).

    Article  PubMed  Google Scholar 

  99. Okasha, S. Evolution and the Levels of Selection (Clarendon, Oxford, 2006).

    Book  Google Scholar 

  100. Dawkins, R. The Selfish Gene (Oxford Univ. Press, New York, 1976).

  101. Sober, E. & Lewontin, R. C. Artifact, cause and genic selection. Philos. Sci. 49, 157–180 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank J. Kaplan for many enjoyable discussions on these themes, G. Wagner for kindly agreeing to read and comment on a previous version of the manuscript while sharing some excellent Austrian Riesling, P. Brakefield and three anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Rationally Speaking (Massimo Pigliucci's blog)

Glossary

Canalization

A concept first introduced by C.H. Waddington in the 1940s to refer to the fact that development is often resistant to perturbation and seems to proceed along certain preferential directions (to be 'canalized' along certain channels).

Epistasis

A term that originated with quantitative genetic theory to describe a particular type of nonlinear statistical interaction of gene effects on quantitative traits. It is generally interpreted to be the population-level outcome of individual-level mechanistic effects due to the biochemical interaction between gene products. However, there is actually no simple relationship between individual-level, mechanistic epistasis and population-level, statistical epistasis.

Negative epistasis

Gene–gene interactions that decrease a given phenotypic effect. This usage of the term epistasis refers directly to population-level, statistical effects.

Positive epistasis

Gene–gene interactions that enhance a given phenotypic effect.

Quasi-species

A model for the evolution of replicating entities such as RNA and DNA, originally proposed by Eigen. The basic idea is that the early evolution of life was characterized by relatively high mutation rates, so that selection did not act on individual sequences but on clusters of closely related sequences, known as quasi-species.

Teleology

A philosophical approach, tracing back at least to Aristotle, that seeks explanations in terms of final causes. In evolutionary biology, teleology has often taken the form of some sort of vitalistic force that pushes evolution in a particular direction, for example, increased complexity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pigliucci, M. Is evolvability evolvable?. Nat Rev Genet 9, 75–82 (2008). https://doi.org/10.1038/nrg2278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing