Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kinase mutations in human disease: interpreting genotype–phenotype relationships

Key Points

  • Protein kinases comprise one of the largest families of evolutionarily related proteins.

  • Mutations in kinase genes underlie many human diseases, particularly developmental and metabolic disorders, as well as certain cancers.

  • We have curated inherited germline kinase gene mutations and briefly review the relationship between kinase gene mutations and cancer phenotypes.

  • The distribution of mutations has helped define crucial functional domains of kinases, mutational hotspots across the kinase gene family and the relevance of evolutionarily mediated lineage-specific variations.

  • The identification of the range of phenotypes in a single kinase gene brings clinical insight into various germline disorders and cancers.

  • Genome-wide association studies are heralding a new wave of discoveries by expanding the involvement of kinase variants from rare syndromes to complex diseases.

  • Kinases comprise 20% of all putative drug targets, so defining phenotype−genotype relationships of kinases will help the development of future therapies.

Abstract

Protein kinases are one of the largest families of evolutionarily related proteins and comprise one of the most abundant gene families in humans. Here we survey kinase gene mutations from the perspective of human disease phenotypes and further analyse the structural features of mutant kinases, including mutational hotspots. Our evaluation of the genotype–phenotype relationship across 915 human kinase mutations — that underlie 67 single-gene diseases, mainly inherited developmental and metabolic disorders and also certain cancers — enhances our understanding of the role of kinases in development, kinase dysfunction in pathogenesis and kinases as potential targets for therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generic catalytic domain of protein kinases depicting subdomain structure and function.
Figure 2: Genetic pleiotropy.
Figure 3: Structural distribution of kinase mutations.

Similar content being viewed by others

References

  1. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002). This landmark article established the size, range and implications of the protein kinase family in the human genome.

    CAS  PubMed  Google Scholar 

  2. Hubbard, M. J. & Cohen, P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 18, 172–177 (1993).

    CAS  PubMed  Google Scholar 

  3. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Google Scholar 

  4. Torkamani, A. & Schork, N. J. Distribution analysis of nonsynonymous polymorphisms within the human kinase gene family. Genomics 90, 49–58 (2007).

    CAS  PubMed  Google Scholar 

  5. Hanks, S. K. & Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596 (1995).

    CAS  PubMed  Google Scholar 

  6. Manning, G., Plowman, G. D., Hunter, T. & Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27, 514–520 (2002).

    CAS  PubMed  Google Scholar 

  7. Lopez-Bigas, N. & Ouzounis, C. A. Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 32, 3108–3114 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hegele, R. A. Phenomics, lipodystrophy, and the metabolic syndrome. Trends Cardiovasc. Med. 14, 133–137 (2004).

    CAS  PubMed  Google Scholar 

  9. Schork, N. J. Genetics of complex disease: approaches, problems, and solutions. Am. J. Respir. Crit. Care Med. 156, S103–109 (1997).

    CAS  PubMed  Google Scholar 

  10. Hegele, R. A. Phenomics, lamin A/C, and metabolic disease. J. Clin. Endocrinol. Metab. 92, 4566–4568 (2007).

    CAS  PubMed  Google Scholar 

  11. Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genet. 29, 465–468 (2001).

    CAS  PubMed  Google Scholar 

  12. Narkis, G. et al. Lethal congenital contractural syndrome type 2 (LCCS2) is caused by a mutation in ERBB3 (Her3), a modulator of the phosphatidylinositol-3-kinase/Akt pathway. Am. J. Hum. Genet. 81, 589–595 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, D. H. et al. Missense mutations in the regulatory domain of PKCγ: a new mechanism for dominant nonepisodic cerebellar ataxia. Am. J. Hum. Genet. 72, 839–849 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Coussens, L. et al. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science 233, 859–866 (1986).

    CAS  PubMed  Google Scholar 

  15. Aronowski, J. & Grotta, J. C. Ca2+/calmodulin-dependent protein kinase II in postsynaptic densities after reversible cerebral ischemia in rats. Brain Res. 709, 103–110 (1996).

    CAS  PubMed  Google Scholar 

  16. Aronowski, J., Grotta, J. C., Strong, R. & Waxham, M. N. Interplay between the gamma isoform of PKC and calcineurin in regulation of vulnerability to focal cerebral ischemia. J. Cereb. Blood Flow Metab. 20, 343–349 (2000).

    CAS  PubMed  Google Scholar 

  17. Stenirri, S. et al. Integrated strategy for fast and automated molecular characterization of genes involved in craniosynostosis. Clin. Chem. 53, 1767–1774 (2007).

    CAS  PubMed  Google Scholar 

  18. Chen, L. & Deng, C. X. Roles of FGF signaling in skeletal development and human genetic diseases. Front. Biosci. 10, 1961–1976 (2005).

    CAS  PubMed  Google Scholar 

  19. Shore, E. M. et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nature Genet. 38, 525–527 (2006).

    CAS  PubMed  Google Scholar 

  20. Yu, P. B. et al. BMP type I receptor inhibition reduces heterotopic ossification. Nature Med. 14, 1363–1369 (2008).

    CAS  PubMed  Google Scholar 

  21. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007). This report provided the first in-depth exploration of the frequency of somatic mutation in protein kinases in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maru, Y. & Witte, O. N. The BCR gene encodes a novel serine/threonine kinase activity within a single exon. Cell 67, 459–468 (1991).

    CAS  PubMed  Google Scholar 

  23. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science 293, 876–880 (2001).

    CAS  PubMed  Google Scholar 

  24. Demiroglu, A. et al. The t(8;22) in chronic myeloid leukemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood 98, 3778–3783 (2001).

    CAS  PubMed  Google Scholar 

  25. Peeters, P. et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90, 2535–2540 (1997).

    CAS  PubMed  Google Scholar 

  26. Lacronique, V. et al. A TEL–JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312 (1997).

    CAS  PubMed  Google Scholar 

  27. Reiter, A. et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res. 65, 2662–2667 (2005).

    CAS  PubMed  Google Scholar 

  28. Baxter, E. J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    CAS  PubMed  Google Scholar 

  29. Tefferi, A. et al. JAK2 germline genetic variation affects disease susceptibility in primary myelofibrosis regardless of V617F mutational status: nullizygosity for the JAK2 46/1 haplotype is associated with inferior survival. Leukemia 22 Oct 2009 (doi: 10.1038/leu.2009.225).

    PubMed  Google Scholar 

  30. Sankelo, M. et al. BMPR2 mutations have short lifetime expectancy in primary pulmonary hypertension. Hum. Mutat. 26, 119–124 (2005).

    CAS  PubMed  Google Scholar 

  31. Wong, W. K., Knowles, J. A. & Morse, J. H. Bone morphogenetic protein receptor type II C-terminus interacts with c-Src: implication for a role in pulmonary arterial hypertension. Am. J. Respir. Cell. Mol. Biol. 33, 438–446 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Beppu, H. et al. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev. Biol. 221, 249–258 (2000).

    CAS  PubMed  Google Scholar 

  33. Pouliot, F., Blais, A. & Labrie, C. Overexpression of a dominant negative type II bone morphogenetic protein receptor inhibits the growth of human breast cancer cells. Cancer Res. 63, 277–281 (2003).

    CAS  PubMed  Google Scholar 

  34. Elder, M. in Primary Immunodeficiency Diseases: A Molecular and Genetic Approach (eds Ochs, H. D., Edvard Smith, C. I. & Puck, J.) 203–211 (Oxford University Press, New York, 2006).

    Google Scholar 

  35. Vorechovsky, I. et al. Molecular diagnosis of X-linked agammaglobulinaemia. Lancet 341, 1153 (1993).

    CAS  PubMed  Google Scholar 

  36. Cheng, G., Ye, Z. S. & Baltimore, D. Binding of Bruton's tyrosine kinase to Fyn, Lyn, or Hck through a Src homology 3 domain-mediated interaction. Proc. Natl Acad. Sci. USA 91, 8152–8155 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Thomas, J. D. et al. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261, 355–358 (1993).

    CAS  PubMed  Google Scholar 

  38. Zonana, J. et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am. J. Hum. Genet. 67, 1555–1562 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rudolph, D. et al. Severe liver degeneration and lack of NFB activation in NEMO/IKKγ-deficient mice. Genes Dev. 14, 854–862 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pitteloud, N. et al. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc. Natl Acad. Sci. USA 103, 6281–6286 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. George, S. et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304, 1325–1328 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Semple, R. K. et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J. Clin. Invest. 119, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001).

    CAS  PubMed  Google Scholar 

  44. Kirschner, L. S. et al. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nature Genet. 26, 89–92 (2000).

    CAS  PubMed  Google Scholar 

  45. Kesler, S. R. et al. Altered neurodevelopment associated with mutations of RSK2: a morphometric MRI study of Coffin–Lowry syndrome. Neurogenetics 8, 143–147 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lahiry, P. et al. A multiplex human syndrome implicates a key role for intestinal cell kinase in development of central nervous, skeletal, and endocrine systems. Am. J. Hum. Genet. 84, 134–147 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer 4, 177–183 (2004).

    CAS  Google Scholar 

  48. Forbes, S. A. et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr. Protoc. Hum. Genet. Chapter 10, Unit 10.11 (2008).

  49. Ingvarsson, S. et al. Mutation analysis of the CHK2 gene in breast carcinoma and other cancers. Breast Cancer Res. 4, R4 (2002).

    PubMed  PubMed Central  Google Scholar 

  50. Mosse, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, Y. et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455, 971–974 (2008).

    CAS  PubMed  Google Scholar 

  52. George, R. E. et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455, 975–978 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008).

    CAS  PubMed  Google Scholar 

  54. Reilly, J. T. FLT3 and its role in the pathogenesis of acute myeloid leukaemia. Leuk. Lymphoma 44, 1–7 (2003).

    CAS  PubMed  Google Scholar 

  55. Petzer, A. L., Hogge, D. E., Landsdorp, P. M., Reid, D. S. & Eaves, C. J. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc. Natl Acad. Sci. USA 93, 1470–1474 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wright, T. M. et al. Ror2, a developmentally regulated kinase, promotes tumor growth potential in renal cell carcinoma. Oncogene 28, 2513–2523 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Takeuchi, S. et al. Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 5, 71–78 (2000).

    CAS  PubMed  Google Scholar 

  58. Hegele, R. LMNA mutation position predicts organ system involvement in laminopathies. Clin. Genet. 68, 31–34 (2005).

    PubMed  Google Scholar 

  59. Plaza-Menacho, I., Burzynski, G. M., de Groot, J. W., Eggen, B. J. & Hofstra, R. M. Current concepts in RET-related genetics, signaling and therapeutics. Trends Genet. 22, 627–636 (2006).

    CAS  PubMed  Google Scholar 

  60. Mulligan, L. M. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363, 458–460 (1993).

    CAS  PubMed  Google Scholar 

  61. Xue, F. et al. Germline RET mutations in MEN 2A and FMTC and their detection by simple DNA diagnostic tests. Hum. Mol. Genet. 3, 635–638 (1994).

    CAS  PubMed  Google Scholar 

  62. Eng., C. et al. Mutations in the RET proto-oncogene and the von Hippel–Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. J. Med. Genet. 32, 934–937 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Arighi, E., Borrello, M. G. & Sariola, H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 16, 441–467 (2005).

    CAS  PubMed  Google Scholar 

  64. Skinner, M. A., Safford, S. D., Reeves, J. G., Jackson, M. E. & Freemerman, A. J. Renal aplasia in humans is associated with RET mutations. Am. J. Hum. Genet. 82, 344–351 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Amiel, J. et al. Mutations of the RET–GDNF signaling pathway in Ondine's curse. Am. J. Hum. Genet. 62, 715–717 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    CAS  PubMed  Google Scholar 

  67. Wan, P. T. et al. Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004). An example of the subtle way in which somatic mutations in cancer alter the catalytic activity of a protein kinase.

    CAS  PubMed  Google Scholar 

  68. Rodriguez-Viciana, P. et al. Germline mutations in genes within the MAPK pathway cause cardio–facio–cutaneous syndrome. Science 311, 1287–1290 (2006).

    CAS  PubMed  Google Scholar 

  69. Wojnowski, L. et al. Endothelial apoptosis in Braf-deficient mice. Nature Genet. 16, 293–297 (1997).

    CAS  PubMed  Google Scholar 

  70. Dudek, H. et al. Regulation of neuronal survival by the serine–threonine protein kinase Akt. Science 275, 661–665 (1997).

    CAS  PubMed  Google Scholar 

  71. Muenke, M. et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Genet. 8, 269–274 (1994).

    CAS  PubMed  Google Scholar 

  72. Reardon, W. et al. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nature Genet. 8, 98–103 (1994).

    CAS  PubMed  Google Scholar 

  73. Rutland, P. et al. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nature Genet. 9, 173–176 (1995).

    CAS  PubMed  Google Scholar 

  74. Wilkie, A. O. et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nature Genet. 9, 165–172 (1995).

    CAS  PubMed  Google Scholar 

  75. Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    CAS  PubMed  Google Scholar 

  76. Alatzoglou, K. S., Hindmarsh, P. C., Brain, C., Torpiano, J. & Dattani, M. T. Acanthosis nigricans and insulin sensitivity in patients with achondroplasia and hypochodroplasia due to FGFR3 mutations. J. Clin. Endocrinol. Metab. 94, 3959–3963 (2009).

    CAS  PubMed  Google Scholar 

  77. Tavormina, P. L. et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nature Genet. 9, 321–328 (1995).

    CAS  PubMed  Google Scholar 

  78. Bellus, G. A. et al. Identical mutations in three different fibroblast growth factor receptor genes in autosomal dominant craniosynostosis syndromes. Nature Genet. 14, 174–176 (1996).

    CAS  PubMed  Google Scholar 

  79. Wilkie, A. O. Craniosynostosis: genes and mechanisms. Hum. Mol. Genet. 6, 1647–1656 (1997).

    CAS  PubMed  Google Scholar 

  80. Ortutay, C., Valiaho, J., Stenberg, K. & Vihinen, M. KinMutBase: a registry of disease-causing mutations in protein kinase domains. Hum. Mutat. 25, 435–442 (2005). This paper describes KinMutBase, a comprehensive database for human disease-related mutations in protein kinase domains.

    CAS  PubMed  Google Scholar 

  81. Groussin, L. et al. Mutations of the PRKAR1A gene in Cushing's syndrome due to sporadic primary pigmented nodular adrenocortical disease. J. Clin. Endocrinol. Metab. 87, 4324–4329 (2002).

    CAS  PubMed  Google Scholar 

  82. Denayer, E. & Legius, E. What's new in the neuro–cardio–facial–cutaneous syndromes? Eur. J. Pediatr. 166, 1091–1098 (2007).

    PubMed  Google Scholar 

  83. Niihori, T. et al. Germline KRAS and BRAF mutations in cardio–facio–cutaneous syndrome. Nature Genet. 38, 294–296 (2006).

    CAS  PubMed  Google Scholar 

  84. Seger, R. & Krebs, E. G. The MAPK signaling cascade. FASEB J. 9, 726–735 (1995).

    CAS  PubMed  Google Scholar 

  85. Meyers, G. A., Orlow, S. J., Munro, I. R., Przylepa, K. A. & Jabs, E. W. Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nature Genet. 11, 462–464 (1995).

    CAS  PubMed  Google Scholar 

  86. White, K. E. et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am. J. Hum. Genet. 76, 361–367 (2005).

    CAS  PubMed  Google Scholar 

  87. Torkamani, A., Kannan, N., Taylor, S. S. & Schork, N. J. Congenital disease SNPs target lineage specific structural elements in protein kinases. Proc. Natl Acad. Sci. USA 105, 9011–9016 (2008). This paper provides the basis for an analysis of the structural distribution of disease-causing and common genomic variants in protein kinases.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Torkamani, A., Verkhivker, G. & Schork, N. J. Cancer driver mutations in protein kinase genes. Cancer Lett. 281, 117–127 (2009).

    CAS  PubMed  Google Scholar 

  89. Dixit, A., Torkamani, A., Schork, N. J. & Verkhivker, G. Computational modeling of structurally conserved cancer mutations in the RET and MET kinases: the impact on protein structure, dynamics, and stability. Biophys. J. 96, 858–874 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Garber, K. The second wave in kinase cancer drugs. Nature Biotechnol. 24, 127–130 (2006).

    CAS  Google Scholar 

  91. Torkamani, A. & Schork, N. J. Prediction of cancer driver mutations in protein kinases. Cancer Res. 68, 1675–1682 (2008). This paper provides the basis for an analysis of the structural distribution of somatic mutations in protein kinases.

    CAS  PubMed  Google Scholar 

  92. Kannan, N., Haste, N., Taylor, S. S. & Neuwald, A. F. The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module. Proc. Natl Acad. Sci. USA 104, 1272–1277 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kannan, N., Taylor, S. S., Zhai, Y., Venter, J. C. & Manning, G. Structural and functional diversity of the microbial kinome. PLoS Biol. 5, e17 (2007). This paper is a survey of the microbial kinome and compares the structural elements of eukaryotic-like kinases with eukaryotic protein kinases

    PubMed  PubMed Central  Google Scholar 

  94. Kannan, N. & Neuwald, A. F. Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component? J. Mol. Biol. 351, 956–972 (2005). This paper describes some of the mechanistic details of protein kinase activity and their evolution from more primitive eukaryotic-like kinases.

    CAS  PubMed  Google Scholar 

  95. Lynch, D. K., Ellis, C. A., Edwards, P. A. & Hiles, I. D. Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism. Oncogene 18, 8024–8032 (1999).

    CAS  PubMed  Google Scholar 

  96. Deminoff, S. J., Howard, S. C., Hester, A., Warner, S. & Herman, P. K. Using substrate-binding variants of the cAMP-dependent protein kinase to identify novel targets and a kinase domain important for substrate interactions in Saccharomyces cerevisiae. Genetics 173, 1909–1917 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Vitkup, D., Sander, C. & Church, G. M. The amino-acid mutational spectrum of human genetic disease. Genome Biol. 4, R72 (2003).

    PubMed  PubMed Central  Google Scholar 

  98. Winkelmann, J. et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nature Genet. 39, 1000–1006 (2007).

    CAS  PubMed  Google Scholar 

  99. Sparso, T. et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia 51, 70–75 (2008).

    CAS  PubMed  Google Scholar 

  100. Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genet. 40, 204–210 (2008).

    CAS  PubMed  Google Scholar 

  101. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007). This paper reports one of the first three-stage genome-wide association studies in breast cancer that identified six highly significantly associated SNPs, with the most notable gene being FGFR2.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. O'Donovan, M. C. et al. Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Mol. Psychiatry 14, 30–36 (2009).

    CAS  PubMed  Google Scholar 

  103. Miyagawa, T. et al. Variant between CPT1B and CHKB associated with susceptibility to narcolepsy. Nature Genet. 40, 1324–1328 (2008).

    CAS  PubMed  Google Scholar 

  104. Wang, Y. et al. Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc. Natl Acad. Sci. USA 106, 226–231 (2009).

    CAS  PubMed  Google Scholar 

  105. The Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nature Genet. 41, 824–828 (2009).

  106. McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pawson, T. Regulation and targets of receptor tyrosine kinases. Eur. J. Cancer 38, (Suppl. 5), 3–10 (2002). A key overview of receptor tyrosine kinase biology and regulation.

    Google Scholar 

  109. Gerthoffer, W. T. & Singer, C. A. MAPK regulation of gene expression in airway smooth muscle. Respir. Physiol. Neurobiol. 137, 237–250 (2003).

    CAS  PubMed  Google Scholar 

  110. Johnson, G. L. & Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912 (2002).

    CAS  PubMed  Google Scholar 

  111. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Welch, P. J. & Wang, J. Y. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75, 779–790 (1993).

    CAS  PubMed  Google Scholar 

  113. Edelman, A. M., Blumenthal, D. K. & Krebs, E. G. Protein serine/threonine kinases. Annu. Rev. Biochem. 56, 567–613 (1987).

    CAS  PubMed  Google Scholar 

  114. Capra, M. et al. Frequent alterations in the expression of serine/threonine kinases in human cancers. Cancer Res. 66, 8147–8154 (2006).

    CAS  PubMed  Google Scholar 

  115. Guicciardi, M. E. & Gores, G. J. AIP1: a new player in TNF signaling. J. Clin. Invest. 111, 1813–1815 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu, B. E. et al. WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. J. Biol. Chem. 279, 7826–7831 (2004).

    CAS  PubMed  Google Scholar 

  117. Anderson, C. W. & Lees-Miller, S. P. The nuclear serine/threonine protein kinase DNA-PK. Crit. Rev. Eukaryot Gene Expr. 2, 283–314 (1992).

    CAS  PubMed  Google Scholar 

  118. Cheung, E. C. et al. Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J. 25, 4061–4073 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Desmots, F., Russell, H. R., Michel, D. & McKinnon, P. J. Scythe regulates apoptosis-inducing factor stability during endoplasmic reticulum stress-induced apoptosis. J. Biol. Chem. 283, 3264–3271 (2008).

    CAS  PubMed  Google Scholar 

  120. Fu, Z. et al. Identification of yin-yang regulators and a phosphorylation consensus for male germ cell-associated kinase (MAK)-related kinase. Mol. Cell Biol. 26, 8639–8654 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.L. is supported by the Canadian Institutes of Health Research (CIHR) Scriver Family M.D./Ph.D. studentship award and the Heart and Stroke Foundation of Ontario Vascular Training Program. R.A.H. holds the Edith Schulich Vinet Canada Research Chair (Tier I) in Human Genetics and the Jacob J. Wolfe Distinguished Medical Research Chair. This work was supported by operating grants from the Heart and Stroke Foundation of Ontario (NA 6,018), the Canadian Institutes for Health Research (MOP 13,430 and 79,533), the Jean Davignon Distinguished Cardiovascular-Metabolic Research Award (Pfizer, Canada) and Genome Canada through the Ontario Genomics Institute. N.J.S. and A.T. are supported in part by the Scripps Translational Science Institute Clinical Translational Science Award (NIH U54RR02504-01). A.T. is also supported in part by a Scripps Dickinson Fellowship. We thank Natarajan Kannan for providing an earlier version of Figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Hegele.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Inherited kinasopathies and their germline kinase mutation according to organ system involvement (PDF 274 kb)

Supplementary Table 2

Selected kinases associated with cancer and related findings in induced mutant animal models (PDF 290 kb)

Related links

Related links

DATABASES

OMIM

Carney syndrome

CFC syndrome

CML

Pfeiffer syndrome

FURTHER INFORMATION

Robert Hegele's homepage

1000 Genomes

Catalogue of Somatic Mutations in Cancer (COSMIC)

Kinase.com

Kinase Pathway Database

Kinase Sequence Database

KinMutBase

Kinweb Kinase Database

Multiple endocrine neoplasia type 2 (MEN2) RET database

Protein Kinase Resource

Protein Structure Initiative

The Cancer Genome Atlas

Glossary

Amino acids

Amino acids contain a basic amino (NH2) group, an acidic carboxyl (COOH) group and a side chain attached to an alpha carbon atom. The 20 amino acids can be classified based on the charge of their side chain, which can be neutral non-polar, neutral polar, acidic or basic.

Apoptosis

The process of programmed cell death that does not involve the release of harmful substances into the surrounding area. It has crucial function in division and differentiation by eliminating cells that are unnecessary for appropriate embryonic development.

Genetic pleiotropy

The effect of a single gene on multiple phenotypic traits. The underlying mechanism is related to the effects of the gene product on various targets.

Locus heterogeneity

This occurs when a phenotype is caused by mutations at more than one gene locus, which suggests that the products of the genes belong to the same metabolic pathway.

Mutational hotspots

A region in which the frequency of mutation is greater than expected, owing to specific structural and/or functional features of the protein or gene.

Kinome

The set of protein kinases in the genome of an organism.

Kinasopathy

A clinical phenotype that is caused by germline mutations in the kinase domain of functional proteins that lead to a loss-of-function or gain-of-function of the protein.

Myasthenia

A general term for an inherited neuromuscular disorder characterized by fluctuating muscle weakness and fatiguability that is often caused by one of several types of functional molecular defects at the neuromuscular junction.

Polycythemia vera

A blood disorder in which the bone marrow overproduces red blood cells (and sometimes other blood components). The resulting increase in blood viscosity can lead to health problems, especially enhanced blood clotting.

Tumour suppressor

A molecule that inhibits uncontrolled cell growth such that its loss- or reduction-of-function mutation favours the formation of tumours.

Proto-oncogene

A gene that promotes the specialization and division of cells; however, when it is mutated or expressed at high levels, it causes abnormal cellular growth.

Neuroblastoma

A childhood cancer derived from immature neurons of the sympathetic nervous system.

Common neutral mutation

A non-synonymous SNP present in at least 1% of the human population that is either overtly neutral or not known to influence disease in appreciable ways.

Allosteric interaction

In an enzyme with at least two binding sites (an active site and another binding site that binds an allosteric effector), the binding of an allosteric effector alters the structure of the enzyme and increases or decreases catalytic activity.

Ultra-conserved residue

An amino acid in a protein that has virtually 100% sequence identity across many species spanning hundreds of millions of years of evolution, suggesting that it has some essential role(s) in ontogeny and development.

'Gatekeeper' residue

A residue in the ATP-binding site of a protein kinase that controls the access of ATP or ATP-mimetic inhibitors to the binding pocket.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahiry, P., Torkamani, A., Schork, N. et al. Kinase mutations in human disease: interpreting genotype–phenotype relationships. Nat Rev Genet 11, 60–74 (2010). https://doi.org/10.1038/nrg2707

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing