Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of the cancer genome

Key Points

  • Each tumour represents an independent evolutionary experiment, starting from almost the same point: namely, the fertilized egg. As tools for genome-wide analysis become more widely applied, commonalities and variations in the patterns of cancer evolution are emerging, and this has important implications for our understanding of cancer biology and the management of patients with tumours.

  • Evolution may be investigated within an individual cancer through various sampling approaches, ranging from a single sample to multiple samples taken over space and/or time or even from multiple single cells.

  • Massively parallel sequencing data from bulk tumour sampling lend themselves to mathematical approaches that permit the reconstruction of the underlying genomic architecture.

  • Genomic technologies have identified extreme genomic heterogeneity between and even within tumour types. This suggests that evolutionary pathways underlying cancers are diverse and highlights one of the challenges for the design of cancer therapies.

  • Intratumoural heterogeneity reflects the branching and dynamic nature of cancer evolution.

  • When a new mutation arises in a cancer cell, the subsequent evolutionary trajectory of the cell will be influenced by the cellular ground state and any pre-existing mutations. Understanding epistatic interactions that operate within a cancer cell will contribute to our comprehension of carcinogenesis and is important for designing targeted therapeutic approaches.

  • Emerging observations suggest that cancers do not necessarily arise gradually through multiple steps but that sudden 'crisis' events can accelerate carcinogenesis.

  • Many of the aggressive clinical characteristics of cancer depend on the continued generation of variation. There is evidence for the existence of genomic instability in many cancer types, but it remains unclear whether it is a pre-requisite for cancer development or whether cancers can evolve in the presence of a normal mutation rate.

Abstract

The advent of massively parallel sequencing technologies has allowed the characterization of cancer genomes at an unprecedented resolution. Investigation of the mutational landscape of tumours is providing new insights into cancer genome evolution, laying bare the interplay of somatic mutation, adaptation of clones to their environment and natural selection. These studies have demonstrated the extent of the heterogeneity of cancer genomes, have allowed inferences to be made about the forces that act on nascent cancer clones as they evolve and have shown insight into the mutational processes that generate genetic variation. Here we review our emerging understanding of the dynamic evolution of the cancer genome and of the implications for basic cancer biology and the development of antitumour therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The evolution of clonal populations.
Figure 2: The role of the environment in evolutionary adaptation.
Figure 3: Stepwise versus crisis-driven mutation accumulation.
Figure 4: 'Mutator mutations' drive genomic instability in cancers.

Similar content being viewed by others

References

  1. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Vogelstein, B. & Kinzler, K. W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Campbell, P. J. et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl Acad. Sci. USA 105, 13081–13086 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Turajlic, S. et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res. 22, 196–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148, 873–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148, 886–895 (2012). References 13 and 14 provide proof of principle that next-generation sequencing technologies can be combined with single-cell approaches can be used to investigate intra-tumoural heterogeneity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Baker, M. Digital PCR hits its stride. Nature Methods 9, 541–544 (2012).

    Article  CAS  Google Scholar 

  17. Wang, J. et al. Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays. Clin. Chem. 56, 623–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, A. R., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006). This is a comprehensive review of the literature from the field of mathematical modelling in cancer evolution.

    Article  CAS  PubMed  Google Scholar 

  19. Michor, F., Iwasa, Y. & Nowak, M. A. Dynamics of cancer progression. Nature Rev. Cancer 4, 197–205 (2004).

    Article  CAS  Google Scholar 

  20. Attolini, C. S. & Michor, F. Evolutionary theory of cancer. Ann. NY Acad. Sci. 1168, 23–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nature Biotech. 30, 413–421 (2012).

    Article  CAS  Google Scholar 

  23. Durinck, S. et al. Temporal dissection of tumorigenesis in primary cancers. Cancer Discov. 1, 137–143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Greenman, C. D. et al. Estimation of rearrangement phylogeny for cancer genomes. Genome Res. 22, 346–361 (2012). In this article, a mathematical framework is presented for reconstructing temporal sequences of rearrangements and hence evolutionary selection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer 4, 177–183 (2004).

    Article  CAS  Google Scholar 

  28. Blanquet, V. et al. Spectrum of germline mutations in the RB1 gene: a study of 232 patients with hereditary and non hereditary retinoblastoma. Hum. Mol. Genet. 4, 383–388 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Persson, M. et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl Acad. Sci. USA 106, 18740–18744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ellis, M. J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012). This was one of the first studies to correlate somatic mutation changes identified through next-generation sequencing, with treatment responses. Somatic mutations are also mapped to distinct pathways of relevance to tumour cell biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012). This study is an integrated analysis of copy number and gene expression data with long-term clinical follow-up providing a novel molecular stratification of the breast cancer population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Perreard, L. et al. Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res. 8, R23 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, J. et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481, 329–334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ng, C. K. et al. The role of tandem duplicator phenotype in tumour evolution in high-grade serous ovarian cancer. J. Pathol. 226, 703–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. McBride, D. J. et al. Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes. J. Pathol. 227, 446–455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Molenaar, J. J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Gatenby, R. A. et al. Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br. J. Cancer 97, 646–653 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schwartz, J. L., Jordan, R., Sun, J., Ma, H. & Hsieb, A. W. Dose-dependent changes in the spectrum of mutations induced by ionizing radiation. Radiat. Res. 153, 312–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. DeMarini, D. M. Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat. Res. 567, 447–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Le Calvez, F. et al. TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: distinct patterns in never, former, and current smokers. Cancer Res. 65, 5076–5083 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Arkenau, H. T., Kefford, R. & Long, G. V. Targeting BRAF for patients with melanoma. Br. J. Cancer 104, 392–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Su, X. et al. Cascading adoptive cell therapy for metastatic melanoma. Cancer Biother. Radiopharm. 26, 401–406 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Coufal, N. G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Srinivasan, D. & Plattner, R. Activation of ABL tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res. 66, 5648–5655 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Antonescu, C. R. Gastrointestinal stromal tumor (GIST) pathogenesis, familial GIST, and animal models. Semin. Diagn. Pathol. 23, 63–69 (2006).

    Article  PubMed  Google Scholar 

  55. Kwon, J. G. et al. Changes in the structure and function of ICC networks in ICC hyperplasia and gastrointestinal stromal tumors. Gastroenterology 136, 630–639 (2009).

    Article  PubMed  Google Scholar 

  56. Chi, P. et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 467, 849–853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Banerji, S. et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486, 405–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Greenblatt, M. S., Chappuis, P. O., Bond, J. P., Hamel, N. & Foulkes, W. D. TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res. 61, 4092–4097 (2001).

    CAS  PubMed  Google Scholar 

  59. Matsumoto, S. et al. Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26, 5911–5918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mahoney, C. L. et al. LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br. J. Cancer 100, 370–375 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jones, C. J. et al. Evidence for a telomere-independent “clock” limiting RAS oncogene-driven proliferation of human thyroid epithelial cells. Mol. Cell. Biol. 20, 5690–5699 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Jacobs, J. J. et al. Senescence bypass screen identifies TBX2, which represses CDKN2A (p19(ARF)) and is amplified in a subset of human breast cancers. Nature Genet. 26, 291–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Vance, K. W., Carreira, S., Brosch, G. & Goding, C. R. Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas. Cancer Res. 65, 2260–2268 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Notta, F. et al. Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells. Nature 469, 362–367 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Bridgham, J. T., Ortlund, E. A. & Thornton, J. W. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 461, 515–519 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moore, J. H. A global view of epistasis. Nature Genet. 37, 13–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Bissonnette, R. P., Echeverri, F., Mahboubi, A. & Green, D. R. Apoptotic cell death induced by c-MYC is inhibited by BCL-2. Nature 359, 552–554 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Fanidi, A., Harrington, E. A. & Evan, G. I. Cooperative interaction between c-MYC and BCL-2 proto-oncogenes. Nature 359, 554–556 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Rehman, F. L., Lord, C. J. & Ashworth, A. Synthetic lethal approaches to breast cancer therapy. Nature Rev. Clin. Oncol. 7, 718–724 (2010).

    Article  CAS  Google Scholar 

  71. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Swisher, E. M. et al. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 68, 2581–2586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Bignell, G. R. et al. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res. 17, 1296–1303 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Genet. 28, 155–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Magrangeas, F., Avet-Loiseau, H., Munshi, N. C. & Minvielle, S. Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 118, 675–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Beerenwinkel, N. et al. Genetic progression and the waiting time to cancer. PLoS Comput. Biol. 3, e225 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012). This study presents mutational data from normal haematopoietic stem cells, which were found to show similar mutational burden and signatures to those seen in acute leukaemias.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martin, S. A., Hewish, M., Lord, C. J. & Ashworth, A. Genomic instability and the selection of treatments for cancer. J. Pathol. 220, 281–289 (2010).

    CAS  PubMed  Google Scholar 

  83. Vilar, E. & Gruber, S. B. Microsatellite instability in colorectal cancer—the stable evidence. Nature Rev. Clin. Oncol. 7, 153–162 (2010).

    Article  CAS  Google Scholar 

  84. Sheltzer, J. M. et al. Aneuploidy drives genomic instability in yeast. Science 333, 1026–1030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Solomon, D. A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039–1043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nature Rev. Genet. 13, 189–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Cheng, Y. W. et al. CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin. Cancer Res. 14, 6005–6013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Loeb, L. A., Bielas, J. H. & Beckman, R. A. Cancers exhibit a mutator phenotype: clinical implications. Cancer Res. 68, 3551–3557 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Bodmer, W., Bielas, J. H. & Beckman, R. A. Genetic instability is not a requirement for tumor development. Cancer Res. 68, 3558–3560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nature Genet. 43, 830–837 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Migliazza, A. et al. Frequent somatic hypermutation of the 5′ noncoding region of the BCL6 gene in B-cell lymphoma. Proc. Natl Acad. Sci. USA 92, 12520–12524 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bignell, G. R. et al. Signatures of mutation and selection in the cancer genome. Nature 463, 893–898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gandhi, M., Dillon, L. W., Pramanik, S., Nikiforov, Y. E. & Wang, Y. H. DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells. Oncogene 29, 2272–2280 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Letessier, A. et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470, 120–123 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Lang, G. I. & Murray, A. W. Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol. Evol. 3, 799–811 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Veeriah, S. et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genet. 42, 77–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Poulogiannis, G. et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc. Natl Acad. Sci. USA 107, 15145–15150 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Neves, H., Ramos, C., da Silva, M. G., Parreira, A. & Parreira, L. The nuclear topography of ABL, BCR, PML, and RARα genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood 93, 1197–1207 (1999).

    CAS  PubMed  Google Scholar 

  102. Mani, R. S. et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lin, C. et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139, 1069–1083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stephens, P. J. et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462, 1005–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Markowitz, S. et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dunson, D. B. Nonparametric Bayes Applications to Biostatistics (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  108. Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature Genet. 38, 787–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Flanagan, J. M. et al. Intra- and interindividual epigenetic variation in human germ cells. Am. J. Hum. Genet. 79, 67–84 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Figueroa, M. E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17, 13–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Wellcome Trust for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Campbell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Peter J. Campbell's homepage

Glossary

Mutational signatures

Patterns of mutations that are characteristic of a type of cancer or that are indicative of a specific process.

Chromothripsis

A single event that causes genome shattering and reassembly, resulting in a characteristic pattern of oscillating copy number and up to several hundred genomic rearrangements localized to one or a few chromosomes.

Driver mutations

Somatic mutations within cancer genes that confer a clonal advantage, that are causally implicated in oncogenesis and that are positively selected for during cancer evolution.

Synthetic lethality

Two genes are synthetically lethal if mutation of either in isolation is compatible with viability, but mutation of both leads to cell death.

Kataegis

A localized hypermutation that often colocalizes with somatic rearrangements.

Microsatellite instability

(MSI). Microsatellites are repeating sequences within DNA of 2–6 base pairs in length; defects in mismatch repair can give rise to genomic instability within these regions.

Chromosomal instability

(CIN). A form of genomic instability that is common in cancers and is characterized by large chromosomal losses by as of yet undefined mechanisms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yates, L., Campbell, P. Evolution of the cancer genome. Nat Rev Genet 13, 795–806 (2012). https://doi.org/10.1038/nrg3317

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3317

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer