Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ecological genomics of local adaptation

Key Points

  • The study of local adaptation is often focused on polygenic traits and requires the estimation of fitness in the field — both aspects pose many challenges.

  • Reciprocal transplant experiments are the 'gold standard' for local adaptation studies. These are not often possible, but good surrogate approaches can be found in other types of common environmental experiments.

  • Until now, the genetic basis of local adaptation has been studied in traits with simple inheritance and in model organisms with well-developed genomic resources.

  • The end results of selection for adaptation to specific environmental conditions can be studied in isolated populations, in the framework that is designed for those conditions.

  • If the process of local adaptation owing to migration–selection balance is to be studied, then populations that are connected by ongoing gene flow need to be studied.

  • Most plant studies suggest that the majority of polygenic adaptive traits are influenced by many loci with small effects, with contributions from only a few loci with larger effects. In forest trees, hardly any large-effect loci have been detected.

  • Most animal studies have concentrated on adaptation based on distinct phenotypic polymorphisms, with monogenic or oligogenic inheritance. Genetic variation in polygenic traits has been less studied, but results on human height, for example, suggest small effects in many loci.

  • Combining different phenotype and population genetics approaches using an explicit theoretical framework can provide strong total evidence even if individual methods are not conclusive, for example, when identifying loci under selection.

Abstract

It is increasingly important to improve our understanding of the genetic basis of local adaptation because of its relevance to climate change, crop and animal production, and conservation of genetic resources. Phenotypic patterns that are generated by spatially varying selection have long been observed, and both genetic mapping and field experiments provided initial insights into the genetic architecture of adaptive traits. Genomic tools are now allowing genome-wide studies, and recent theoretical advances can help to design research strategies that combine genomics and field experiments to examine the genetics of local adaptation. These advances are also allowing research in non-model species, the adaptation patterns of which may differ from those of traditional model species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defining local adaptation.
Figure 2: Effect sizes of alleles from association or QTL mapping studies.
Figure 3: Evidence for local adaptation in lateral plate numbers in three-spined sticklebacks using different approaches.

Similar content being viewed by others

References

  1. Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004). This paper is a seminal review on concepts of local adaptation.

    Article  Google Scholar 

  2. Conover, D. O., Duffy, T. A. & Hice, L. A. The covariance between genetic and environmental influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation. Ann. N.Y. Acad. Sci. 1168, 100–129 (2009).

    Article  PubMed  Google Scholar 

  3. Savolainen, O., Pyhajarvi, T. & Knurr, T. Gene flow and local adaptation in trees. Ann. Rev. Ecol. Evol. Syst. 38, 595–619 (2007).

    Article  Google Scholar 

  4. Bradshaw, W. E. & Holzapfel, C. M. Genetic shift in photoperiodic response correlated with global warming. Proc. Natl Acad. Sci. USA 98, 14509–14511 (2001). This is a seminal study that demonstrates the evolution of local adaptation in response to climate change-mediated selection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sobel, J. M., Chen, G. F., Watt, L. R. & Schemske, D. W. The biology of speciation. Evolution 64, 295–315 (2010).

    Article  PubMed  Google Scholar 

  6. Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  7. Wright, K. M., Lloyd, D., Lowry, D. B., Macnair, M. R. & Willis, J. H. Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus. PLoS Biol. 11, e1001497 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate changes. Science 292, 673–679 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Franks, S. J. & Hoffmann, A. A. Genetics of climate change adaptation. Ann. Rev. Genet. 46, 185–208 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. L. & Curtis-McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl Acad. Sci. USA 104, 19691–19696 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takeda, S. & Matsuoka, M. Genetic approaches to crop improvement: responding to environmental and population changes. Nature Rev. Genet. 9, 444–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Leimu, R. & Fischer, M. A meta-analysis of local adaptation in plants. PLoS ONE 3, e4010 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hereford, J. A quantitative survey of local adaptation and fitness trade-offs. Amer. Natural. 173, 579–588 (2009). This paper is a comprehensive meta-analysis of local adaptation experiments.

    Article  Google Scholar 

  18. Fraser, D. J., Weir, L. K., Bernatchez, L., Hansen, M. M. & Taylor, E. B. Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106, 404–420 (2011). This is a well-versed review of local adaptation in salmonid fishes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cook, L. M. & Saccheri, I. J. The peppered moth and industrial melanism: evolution of a natural selection case study. Heredity 110, 207–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. van't Hof, A. E., Edmonds, N., Dalikova, M., Marec, F. & Saccheri, I. J. Industrial melanism in British peppered moths has a singular and recent mutational origin. Science 332, 958–960 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Cresko, W. A. et al. Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc. Natl Acad. Sci. USA 101, 6050–6055 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Steiner, C. C., Weber, J. N. & Hoekstra, H. E. Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol. 5, 1880–1889 (2007).

    Article  CAS  Google Scholar 

  24. Linnen, C. R. et al. Adaptive evolution of multiple traits through multiple mutations at a single gene. Science 339, 1312–1316 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Baxter, I. et al. A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet. 6, e1001193 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kivimäki, M., Karkkainen, K., Gaudeul, M., Loe, G. & Agren, J. Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata. Mol. Ecol. 16, 453–462 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Rockman, M. V. The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution 66, 1–17 (2012).

    Article  PubMed  Google Scholar 

  28. Fraser, H. B. Gene expression drives local adaptation in humans. Genome Res. 23, 1089–1096 (2013). This study highlights the importance of gene expression variation in local adaptation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Turchin, M. C. et al. Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nature Genet. 44, 1015–1019 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Turner, T. L., Levine, M. T., Eckert, M. L. & Begun, D. J. Genomic analysis of adaptive differentiation in Drosophila melanogaster. Genetics 179, 455–473 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Fournier-Level, A. et al. A map of local adaptation in Arabidopsis thaliana. Science 333, 86–89 (2011). This is the first common garden experiment that combines fitness estimates and genome-wide SNP data to infer the genetics of local adaptation.

    Article  CAS  Google Scholar 

  32. Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012). This resequencing study of three-spined sticklebacks examined genome-wide adaptation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pritchard, J. K. & Di Rienzo, A. Adaptation – not by sweeps alone. Nature Rev. Genet. 11, 665–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: tests of adaptation at the genetic level. Nature Rev. Genet. 12, 767–780 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Olson-Manning, C. F., Wagner, M. R. & Mitchell-Olds, T. Adaptive evolution: evaluating empirical support for theoretical predictions. Nature Rev. Genet. 13, 867–877 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Stapley, J. et al. Adaptation genomics: the next generation. Trends Ecol. Evol. 25, 705–712 (2010).

    Article  PubMed  Google Scholar 

  37. Storz, J. F. & Wheat, C. W. Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 64, 2489–2509 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Levene, H. Genetic equilibrium when more than one niche is available. Amer. Nat. 87, 331–333 (1953).

    Article  Google Scholar 

  39. Blanquart, F., Gandon, S. & Nuismer, S. L. The effects of migration and drift on local adaptation to a heterogeneous environment. J. Evol. Biol. 25, 1351–1363 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Hedrick, P. W. Genetic polymorphism in heterogeneous environments – a decade later. Ann. Rev. Ecol. Syst. 17, 535–566 (1986).

    Article  Google Scholar 

  41. Yeaman, S. & Whitlock, M. C. The genetic architecture of adaptation under migration–selection balance. Evolution 65, 1897–1911 (2011).

    Article  PubMed  Google Scholar 

  42. Hall, M. C., Lowry, D. B. & Willis, J. H. Is local adaptation in Mimulus guttatus caused by trade-offs at individual loci? Mol. Ecol. 19, 2739–2753 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Yeaman, S. Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc. Natl Acad. Sci. USA 110, E1743–E1751 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kirkpatrick, M. & Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 173, 419–434 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Slatkin, M. Gene flow and selection in a cline. Genetics 75, 733–756 (1973).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Barton, N. H. Clines in polygenic traits. Genet. Res. 74, 223–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Bridle, J. R., Polechova, J., Kawata, M. & Butlin, R. K. Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol. Lett. 13, 485–494 (2010).

    Article  PubMed  Google Scholar 

  48. Le Corre, V. & Kremer, A. Genetic variability at neutral markers, quantitative trait loci and trait in a subdivided population under selection. Genetics 164, 1205–1219 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Hohenlohe, P. A. et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD Tags. PLoS Genet. 6, e1000862 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Tenaillon, O. et al. Molecular diversity of adaptive convergence. Science 335, 457–461 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Burke, M. K. et al. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature 467, 587–590 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol. 11, e1001490 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52, 935–949 (1998).

    Article  PubMed  Google Scholar 

  54. Gavrilets, S. & Gibson, N. Fixation probabilities in a spatially heterogeneous environment. Popul. Ecol. 44, 51–58 (2002).

    Article  Google Scholar 

  55. Turesson, G. The species and the variety as ecological units. Hereditas 3, 110–113 (1922).

    Google Scholar 

  56. Clausen, J., Keck, D. D. & Hiesey, W. M. Experimental studies on the nature of species. I. Effect of varied environments on Western North American plants. Carnegie Institution of Washington Publications 520, 1–452 (1940).

    Google Scholar 

  57. Berven, K. A. The genetic basis of altitudinal variation in the wood frog – Rana sylvatica. I. An experimental analysis of life history traits. Evolution 36, 962–983 (1982).

    PubMed  Google Scholar 

  58. Berven, K. A. The genetic basis of altitudinal variation in the wood frog Rana sylvatica. II. An experimental analysis of larval development. Oecologia 52, 360–369 (1982).

    Article  PubMed  Google Scholar 

  59. Via, S. The genetic structure of host plant adaptation in a spatial patchwork – demographic variability among reciprocally transplanted pea aphid clones. Evolution 45, 827–852 (1991).

    Article  PubMed  Google Scholar 

  60. Griswold, C. K. Gene flow's effect on the genetic architecture of a local adaptation and its consequences for QTL analyses. Heredity 96, 445–453 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Yeaman, S. & Otto, S. P. Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution 65, 2123–2129 (2011).

    Article  PubMed  Google Scholar 

  62. Ågren, J. & Schemske, D. W. Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range. New Phytol. 194, 1112–1122 (2012).

    Article  PubMed  Google Scholar 

  63. Morrissey, M. B. & Hadfield, J. D. Directional selection in temporally replicated studies is remarkably consistent. Evolution 66, 435–442 (2012).

    Article  PubMed  Google Scholar 

  64. Huang, X. et al. The earliest stages of adaptation in an experimental plant population: strong selection on QTLS for seed dormancy. Mol. Ecol. 19, 1335–1351 (2010).

    Article  PubMed  Google Scholar 

  65. Salinas, S. & Munch, S. B. Thermal legacies: transgenerational effects of temperature on growth in a vertebrate. Ecol. Lett. 15, 159–163 (2012).

    Article  PubMed  Google Scholar 

  66. Sultan, S. E., Barton, K. & Wilczek, A. M. Contrasting patterns of transgenerational plasticity in ecologically distinct congeners. Ecology 90, 1831–1839 (2009).

    Article  PubMed  Google Scholar 

  67. Blanquart, F., Kaltz, O., Nuismer, S. L. & Gandon, S. A practical guide to measuring local adaptation. Ecol. Lett. 16, 1195–1205 (2013).

    Article  PubMed  Google Scholar 

  68. Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    Article  PubMed  Google Scholar 

  69. Shaw, R. G., Geyer, C. J., Wagenius, S., Hangelbroek, H. H. & Etterson, J. R. Unifying life history analyses for inference of fitness and population growth. Amer. Nat. 172, E35–E47 (2008).

    Article  Google Scholar 

  70. Tanksley, S. D. Mapping polygenes. Ann. Rev. Genet. 27, 205–233 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Heidel, A. J., Clauss, M. J., Kroymann, J., Savolainen, O. & Mitchell-Olds, T. Natural variation in MAM within and between populations of Arabidopsis lyrata determines glucosinolate phenotype. Genetics 173, 1629–1636 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Leinonen, P. L., Remington, D. L., Leppälä, J. & Savolainen, O. Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata. Mol. Ecol. 22, 709–722 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Lowry, D. B. & Willis, J. H. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 8, e1000500 (2010). This is a carefully replicated study that demonstrates role of inversion polymorphism in local adaptation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Slate, J., Pemberton, J. M. & Visscher, P. M. Power to detect QTL in a free-living polygynous population. Heredity 83, 327–336 (1999).

    Article  PubMed  Google Scholar 

  75. Slate, J. From beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits. Evolution 67, 1251–1262 (2013).

    PubMed  Google Scholar 

  76. Verhoeven, K. J. F., Vanhala, T. K., Biere, A., Nevo, E. & Van Damme, J. The genetic basis of adaptive population differentiation: a quantitative trait locus analysis of fitness traits in two wild barley populatiaons from contrasting habitats. Evolution 58, 270–283 (2004).

    Article  PubMed  Google Scholar 

  77. Verhoeven, K. J. F., Poorter, H., Nevo, E. & Biere, A. Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations. Mol. Ecol. 17, 3416–3424 (2008).

    CAS  PubMed  Google Scholar 

  78. Gardner, K. M. & Latta, R. G. Identifying loci under selection across contrasting environments in Avena barbata using quantitative trait locus mapping. Mol. Ecol. 15, 1321–1333 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Anderson, J. T., Lee, C. R. & Mitchell-Olds, T. Life-history QTLs and natural selection on flowering time in Boechera stricta, a perennial relative of Arabidopsis. Evolution 65, 771–787 (2011).

    Article  PubMed  Google Scholar 

  80. Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).

    Article  PubMed  Google Scholar 

  81. Turner, T. L., Bourne, E. C., Von Wettberg, E. J., Hu, T. T. & Nuzhdin, S. V. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genet. 42, 260–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Bratteler, M., Lexer, C. & Widmer, A. Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris. J. Evol. Biol. 19, 1149–1156 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Antonovics, J. Evolution in closely adjacent plant populations X: long-term persistence of prereproductive isolation at a mine boundary. Heredity 97, 33–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Alberto, F. J. et al. Potential for evolutionary responses to climate change – evidence from tree populations. Glob. Chang. Biol. 19, 1645–1661 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hey, J. Isolation with migration models for more than two populations. Mol. Biol. Evol. 27, 905–920 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Robledo-Arnuncio, J. J. Joint estimation of contemporary seed and pollen dispersal rates among plant populations. Mol. Ecol. Resources 12, 299–311 (2012).

    Article  CAS  Google Scholar 

  87. Weigel, D. & Nordborg, M. Natural variation in Arabidopsis. How do we find the causal genes? Plant Phys. 138, 567–568 (2005).

    Article  CAS  Google Scholar 

  88. Rehfeldt, G. E. et al. Intraspecific responses to climate in Pinus sylvestris. Glob. Chang. Biol. 8, 912–929 (2002).

    Article  Google Scholar 

  89. Balding, D. J. A tutorial on statistical methods for population association studies. Nature Rev. Genet. 7, 781–791 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Wilczek, A. M. et al. Effects of genetic perturbation on seasonal life history plasticity. Science 323, 930–934 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Brachi, B. et al. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. Plos Genet. 6, 17 (2010).

    Article  CAS  Google Scholar 

  92. Mullen, L. M. & Hoekstra, H. E. Natural selection along an environmental gradient: a classic cline in mouse pigmentation. Evolution 62, 1555–1569 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Mackay, T. F. C., Stone, E. A. & Ayroles, J. F. The genetics of quantitative traits: challenges and prospects. Nature Rev. Genet. 10, 565–577 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Salomé, P. A. et al. Genetic architecture of flowering-time variation in Arabidopsis thaliana. Genetics 188, 421–433 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Strange, A. et al. Major-effect alleles at relatively few loci underlie distinct vernalization and flowering variation in Arabidopsis accessions. PLoS ONE 6, e19949 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Excoffier, L. & Ray, N. Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol. Evol. 23, 347–351 (2008).

    Article  PubMed  Google Scholar 

  97. Wang, I. J., Glor, R. E. & Losos, J. B. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol. Lett. 16, 175–182 (2013).

    Article  PubMed  Google Scholar 

  98. Latta, R. G. Testing for local adaptation in Avena barbata: a classic example of ecotypic divergence. Mol. Ecol. 18, 3781–3791 (2009).

    Article  PubMed  Google Scholar 

  99. Leinonen, I., McCairns, R. J. S., O'Hara, B. & Merilä, J. QST–FST comparisons: evolutionary and ecological insights from genomic heterogeneity. Nature Rev. Genet. 14, 179–190 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Marjoram, P., Zubair, A. & Nuszhdin, S. V. Post-GWAS: where next? More samples, more SNPs or more biology? Heredity http://dx.doi.org/10.1038/hdy.2013.52 (2013).

  101. Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Mendez-Vigo, B., Pico, F. X., Ramiro, M., Martinez-Zapater, J. M. & Alonso-Blanco, C. Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant Phys. 157, 1942–1955 (2011).

    Article  CAS  Google Scholar 

  103. Vilhjalmsson, B. J. & Nordborg, M. The nature of confounding in genome-wide association studies. Nature Rev. Genet. 14, 1–2 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Thornsberry, J. M. et al. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genet. 28, 286–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Buckler, E. S. et al. The genetic architecture of maize flowering time. Science 325, 714–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Larsson, S. J., Lipka, A. E. & Buckler, E. S. Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet. 9, e1003246 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Yu, J. M. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet. 38, 203–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Kang, H. M. et al. Efficient control of population structure in model organism association mapping. Genetics 178, 1709–1723 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nature Genet. 42, 348 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genet. 44, 825–830 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Kover, P. X. et al. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet. 5, e1000551 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Ingvarsson, P. K., Garcia, M. V., Luquez, V., Hall, D. & Jansson, S. Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics 178, 2217–2226 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Eckert, A. J. et al. Asssociation genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182, 1289–1302 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Gonzalez-Martinez, S. C., Huber, D., Ersoz, E., Davis, J. M. & Neale, D. B. Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101, 19–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Hall, M. C., Basten, C. J. & Willis, J. H. Pleiotropic quantitative trait loci contribute to population divergence in traits associated with life-history variation in Mimulus guttatus. Genetics 172, 1829–1844 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Colosimo, P. F. et al. The Genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS BioL. 2, e109 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Greenwood, A. K. et al. The genetic basis of divergent pigment patterns in juvenile threespine sticklebacks. Heredity 107, 155–166 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Miller, C. T. et al. cis-regulatory changes in kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell 131, 1179–1189 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Rogers, S. M. et al. Genetic signature of adaptive peak shifts in threespine stickleback. Evolution 66, 2439–2450 (2012). This paper reports a rare empirical comparison of QTL effect size distributions in different stickleback populations.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kenney-Hunt, J. P. et al. Quantitative trait loci for body size components in mice. Mammal. Genome 17, 526–537 (2006).

    Article  Google Scholar 

  122. Tajima, F. Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    PubMed  PubMed Central  CAS  Google Scholar 

  123. MacDonald, J. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    Article  Google Scholar 

  124. Hudson, R. R., Kreitman, M. & Aguadé, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Sattath, S., Elyashiv, E., Kolodny, O., Rinott, Y. & Sella, G. Pervasive adaptive protein evolution apparent in diversity patterns around amino acid substitutions in Drosophila simulans. PLoS Genet. 7, e1001302 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Storz, J. F. & Kelly, J. K. Effects of spatially varying selection on nucleotide diversity and linkage disequilibrium: insights from deer mouse globin genes. Genetics 180, 367–379 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Fourcade, Y., Chaput-Bardy, A., Secondi, J., Fleurant, C. & Lemaire, C. Is local selection so widespread in river organisms? Fractal geometry of river networks leads to high bias in outlier detection. Mol. Ecol. 22, 2065–2073 (2013).

    Article  PubMed  Google Scholar 

  128. Bierne, N., Roze, D. & Welch, J. J. Pervasive selection or is it...? Why are FST outliers sometimes so frequent? Mol. Ecol. 22, 2061–2064 (2013).

    Article  PubMed  Google Scholar 

  129. Coop, G., Witonsky, D., Di Rienzo, A. & Pritchard, J. K. Using environmental correlations to identify loci underlying local adaptation. Genetics 185, 1411–1423 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. De Mita, S. et al. Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol. Ecol. 22, 1383–1399 (2013). This study is a careful evaluation of methods that are available to detect outlier loci.

    Article  PubMed  Google Scholar 

  131. Chen, J. et al. Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics 191, 865–881 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Eckert, A. J. et al. Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol. Ecol. 19, 3789–3805 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Hancock, A. M. et al. Adaptation to climate across the Arabidopsis thaliana genome. Science 334, 83–86 (2011). This genome-wide study analysed the enrichment of non-synonymous sites at environmentally correlated SNPs.

    Article  CAS  PubMed  Google Scholar 

  134. Hancock, A. M. et al. Adaptations to climate-mediated selective pressures in humans. PLoS Genet. 7, e1001375 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  136. DeFaveri, J., Shikano, T., Shimada, Y., Goto, A. & Merila, J. Global analysis of genes involved in freshwater adaptation in threespine sticklebacks (Gasterosteus aculeatus). Evolution 65, 1800–1807 (2011).

    Article  PubMed  Google Scholar 

  137. Barrett, R. D. H. Adaptive evolution of lateral plates in three-spined stickleback Gasterosteus aculeatus: a case study in functional analysis of natural variation. J. Fish Biol. 77, 311–328 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Ovaskainen, O., Karhunen, M., Zheng, C. Z., Arias, J. M. C. & Merila, J. A. New method to uncover signatures of divergent and stabilizing selection in quantitative traits. Genetics 189, 621–632 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yang, J. A. et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Cao, J. et al. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genet. 43, 956–963 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Merilä, J. Evolution in response to climate change: in pursuit of the missing evidence. BioEssays 34, 811–818 (2012).

    Article  PubMed  Google Scholar 

  143. Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol. 195, 752–765 (2012).

    Article  PubMed  Google Scholar 

  144. Baird, N. A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Nielsen, R., Hubisz, M. J. & Clark, A. G. Reconstituting the frequency spectrum of ascertained single-nucleotide polymorphism data. Genetics 168, 2373–2382 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Parchman, T. et al. Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol. Ecol. 21, 2991–3005 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Bi, K. et al. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics 13, 403 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Pool, J. E., Hellmann, I., Jensen, J. D. & Nielsen, R. Population genetic inference from genomic sequence variation. Genome Res. 20, 291–300 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Long, Q. et al. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nature Genet. 45, 884–890 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Gayral, P. et al. Reference-free population genomics from next-generation transcriptome data and the vertebrate–invertebrate gap. PLoS Genet. 9, e1003457 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Bulmer, M. G. Multiple niche polymorphisms. Amer. Nat. 106, 254–257 (1972).

    Article  Google Scholar 

  154. Kimura, M. On the probability of fixation of mutant genes in a population. Genetics 47, 713–719 (1962).

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Kremer, A. & Le Corre, V. Decoupling of differentiation between traits and their underlying genes in response to divergent selection. Heredity 108, 375–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Bulmer, M. G. The effect of selection on genetic variance. Amer. Nat. 105, 201–211 (1971).

    Article  Google Scholar 

  157. Latta, R. G. Differentiation of allelic frequencies at quantitative trait loci affecting locally adaptive traits. Amer. Nat. 151, 283–292 (1998).

    Article  CAS  Google Scholar 

  158. Huey, R. B., Gilchrist, G. W., Carlson, M. L., Berrigan, D. & Serra, L. Rapid evolution of a geographic cline in size in an introduced fly. Science 287, 308–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Lankinen, P. Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. J. Comp. Physiol. A. 159, 123–142 (1986).

    Article  Google Scholar 

  160. Olsson, K. & Ågren, J. Latitudinal population differentiation in phenology, life history and flower morphology in the perennial herb Lythrum salicaria. J. Evol. Biol. 15, 983–996 (2002).

    Article  Google Scholar 

  161. Allard, R. W., Babbel, G. R., Kahler, A. L. & Clegg, M. T. Evidence for coadaptation in Avena barbata. Proc. Natl Acad. Sci. USA 69, 3043–3048 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Stinchcombe, J. R. et al. A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc. Natl Acad. Sci. USA 101, 4712–4717 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Savolainen, O. The genomic basis of local climatic adaptation. Science 333, 49–50 (2011).

    Article  Google Scholar 

  164. Mikola, J. Bud-set phenology as an indicator of climatic adaptation of Scots pine in Finland. Silva Fenn. 16, 178–184 (1982).

    Google Scholar 

  165. Manceau, M., Domingues, V. S., Linnen, C. R., Rosenblum, E. B. & Hoekstra, H. E. Convergence in pigmentation at multiple levels: mutations, genes and function. Phil. Tran. R. Soc. B 365, 2439–2450 (2010).

    Article  CAS  Google Scholar 

  166. Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302–305 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Conte, G. L., Arnegard, M. E., Peichel, C. L. & Schluter, D. The probability of genetic parallelism and convergence in natural populations. Proc. Biol. Sci. 279, 5039–5047 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Martin, A. & Orgogozo, V. The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67, 1235–1250 (2013).

    CAS  PubMed  Google Scholar 

  169. Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).

    Article  Google Scholar 

  170. Crispo, E. et al. The evolution of phenotypic plasticity in response to anthropogenic disturbance. Evol. Ecol. Res. 12, 47–66 (2010).

    Google Scholar 

  171. Luquez, V. et al. Natural phenological variation in aspen (Populus tremula): the SwAsp collection. Tree Genet. Genomes 4, 279–292 (2008).

    Article  Google Scholar 

  172. Hermisson, J. & Pennings, P. S. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169, 2335–2352 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Hernandez, R. D. et al. Classic selective sweeps were rare in recent human evolution. Science 331, 920–924 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Lowry, D. B. Local adaptation in the model plant. New Phytol. 194, 888–890 (2012).

    Article  PubMed  Google Scholar 

  175. Albert, A. Y. K. et al. The genetics of adaptive shape shift in stickleback: pleiotropy and effect size. Evolution 62, 76–85 (2008).

    PubMed  Google Scholar 

  176. Barrett, R. D. H., Rogers, S. M. & Schluter, D. Natural selection on a major armor gene in threespine stickleback. Science 322, 255–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. DeFaveri, J. & Merilä, J. Evidence for adaptive phenotypic differentiation in Baltic Sea sticklebacks. J. Evol. Biol. 26, 1700–1715 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Leinonen for comments on the manuscript. O.S. is supported by the Academy of Finland (Grant number 132611) and the ProCoGen FP7 EU project; M.L. by the Swedish Research Council, Erik Philip-Sörensen Fund and BioDiversa (Linktree and Tiptree projects); and J.M. by the Academy of Finland (Grant number 252597).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Outi Savolainen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Fitness

The contribution of the genes of an individual to the next generation, usually approximated through measuring survival and reproductive success.

Phenology

The timing of life history events, such as the start of growth or flowering in plants or the arrival to breeding grounds by birds.

Adaptive plasticity

The phenomenon by which a genotype can result in alternative phenotypes in different environments so that the overall fitness of the genotype is increased.

Deterministic model

A model in which the same starting conditions result in the same outcome, as opposed to stochastic models in which chance effects influence the results.

Effect size

The contribution of a locus or an allele to phenotypic variance in a trait.

Clines

The gradual phenotypic or allele frequency changes along a geographical or environmental gradient.

Resequencing

A method to obtain population data by sequencing multiple individuals of a species that has already had a reference genome sequenced.

Parallel evolution

The repeated and independent evolution of similar adaptations (phenotypic or molecular) in multiple populations.

Migration–selection balance

The phenomenon in which the relative strengths of migration and selection determine the level of polymorphism.

Conditional neutrality

A situation in which some alleles may be advantageous in one environment but neutral in other environments.

Reciprocal transplant experiments

Field experiments in which individuals from at least two populations are reared in their respective native and non-native environments.

Stabilizing selection

A situation in which phenotypes that are close to an optimum have highest fitness.

Infinitesimal model

A model in which variation in a quantitative trait is assumed to be due to small effects at many loci.

Quantitative trait locus

(QTL). A genomic area that is found to be associated with variation in a quantitative trait in the progeny of a genetic cross.

Recombinant inbred lines

(RILs). Lines generated by first crossing differentiated parents to produce heterozygous offspring that are self-fertilized. After a few generations, the self-fertilized lines contain different mixtures of parental genomes in a homozygous state.

Inbreeding depression

The decreased fitness of progeny owing to mating between relatives.

Linkage disequilibrium

(LD). The nonrandom association of alleles at two or more different loci.

Antagonistic pleiotropy

The phenomenon in which alternative alleles at a given locus are favoured in different environments.

Polygenic traits

Traits that are influenced by variation at many loci.

Quantitative trait nucleotides

(QTNs). The causative nucleotides that govern the expression of variation in given traits.

Hudson–Kreitman–Aguadé tests

(HKA tests). Tests of selection versus neutrality, based on the comparison of divergence between species with diversity within species between different genomic areas.

Selective sweeps

When a mutation with a beneficial fitness effect arises in a population, natural selection will rapidly increase the frequency of the mutation to a high frequency (partial sweep) or to fixation (complete sweep), which results in a reduction of diversity at and around the selected locus.

Wright fixation index

(FST). The proportion of the total genetic variability that occurs among populations. It is typically used as a measure of the level of population genetic differentiation.

FST–QST comparisons

Tests for selection that compare the degree of differentiation in quantitative traits (QST) with the population genetic differentiation at the marker loci (FST).

Standing genetic variation

Existing variation in a population as opposed to variation that is emerging owing to mutation.

Restriction-site-associated DNA sequencing

(RAD–seq). A technique for partial DNA sequencing, in which DNA is first cut with restriction enzymes and the DNA next to these sites is then sequenced.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savolainen, O., Lascoux, M. & Merilä, J. Ecological genomics of local adaptation. Nat Rev Genet 14, 807–820 (2013). https://doi.org/10.1038/nrg3522

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3522

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing