Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Life is a journey: a genetic look at neocortical development

Key Points

  • The neocortex is the most recently evolved part of the cerebral cortex. Its development has been well studied for some time, partly because of its striking organization into six distinct neuronal layers and partly because its development is disrupted in several human diseases.

  • Only recently have significant advances been made in our understanding of the molecular mechanisms that determine neocortical development, mainly based on genetic studies of human diseases that affect cortical development, such as lissencephaly, and of mouse mutants with cortical-layering defects. These studies have provided molecular biologists with several key proteins that are required for proper neuronal migration in the cortex.

  • Genetic and cell-biological studies have identified how several key proteins that are required for the proper radial migration of neurons in the cortex, such as reelin, lissencephaly 1 and cyclin-dependent kinase 5, modulate signalling pathways that are involved in neuronal migration and adhesion. Recent work is beginning to identify how these pathways interact and modulate one another.

  • Further advances in our understanding of neuronal migration and how the pathways that regulate cortical layering are integrated will be best addressed by a combination of both genetic and developmental approaches.

Abstract

Although the basic principles of neocortical development have been known for quite some time, it is only recently that our understanding of the molecular mechanisms that are involved has improved. Such understanding has been facilitated by genetic approaches that have identified key proteins involved in neocortical development, which have been placed into signalling pathways by molecular and cell-biological studies. The challenge of current research is to understand the manner in which these various signalling pathways are interconnected to gain a more comprehensive picture of the molecular intricacies that govern neocortical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neocortical-layer formation.
Figure 2: Neocortical-layer formation in Lis1 mouse mutants.
Figure 3: Cell migration by leading-edge extension and reeling in of the cell soma.
Figure 4: Mouse mutants with preplate and post-preplate defects.
Figure 5: Reelin signalling.
Figure 6: p35–Cdk5 signalling.
Figure 7: Integration of signalling.

Similar content being viewed by others

References

  1. Jacobson, M. Developmental Neurobiology 411–420 (Plenum, New York and London, 1991).

    Google Scholar 

  2. Maricich, S. M., Gilmore, E. C. & Herrup, K. The role of tangential migration in the establishment of mammalian cortex. Neuron 31, 175–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Marin, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 2, 780–790 (2001).

    CAS  Google Scholar 

  4. Gilmore, E. C. & Herrup, K. Neocortical cell migration: GABAergic neurons and cells in layers I and VI move in a cyclin-dependent kinase 5-independent manner. J. Neurosci. 21, 9690–9700 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bayer, S. A. & Altman, J. Neocortical Development 65–72 (Raven, New York, 1991).One of the most detailed descriptions of cortical histogenesis, but conducted in the rat.

    Google Scholar 

  6. Bayer, S. A. & Altman, J. Neocortical Development 73–82 (Raven, New York, 1991).

    Google Scholar 

  7. Angevine, J. Jr & Sidman, R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).

    PubMed  Google Scholar 

  8. Rakic, P. Neuron–glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electron microscopic study in Macacus rhesus. J. Comp. Neurol. 141, 283–312 (1971).

    CAS  PubMed  Google Scholar 

  9. Rakic, P. Guidance of neurons migrating to the fetal monkey neocortex. Brain Res. 33, 471–476 (1971).

    CAS  PubMed  Google Scholar 

  10. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83 (1972).

    CAS  PubMed  Google Scholar 

  11. O'Rourke, N. A., Dailey, M. E., Smith, S. J. & McConnell, S. K. Diverse migratory pathways in the developing cerebral cortex. Science 258, 299–302 (1992).

    CAS  PubMed  Google Scholar 

  12. Edmondson, J. C. & Hatten, M. E. Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J. Neurosci. 7, 1928–1934 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dulabon, L. et al. Reelin binds a α3β1 integrin and inhibits neuronal migration. Neuron 27, 33–44 (2000).

    CAS  PubMed  Google Scholar 

  14. Anton, E. S., Kreidberg, J. A. & Rakic, P. Distinct functions of α3 and α(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 22, 277–289 (1999).

    CAS  PubMed  Google Scholar 

  15. Pearlman, A. L., Faust, P. L., Hatten, M. E. & Brunstrom, J. E. New directions for neuronal migration. Curr. Opin. Neurobiol. 8, 45–54 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Morris, N. R., Efimov, V. P. & Xiang, X. Nuclear migration, nucleokinesis and lissencephaly. Trends Cell Biol. 8, 467–470 (1998).

    CAS  PubMed  Google Scholar 

  17. Book, K. J. & Morest, D. K. Migration of neuroblasts by perikaryal translocation: role of cellular elongation and axonal outgrowth in the acoustic nuclei of the chick embryo medulla. J. Comp. Neurol. 297, 55–76 (1990).

    CAS  PubMed  Google Scholar 

  18. Book, K. J., Howard, R. & Morest, D. K. Direct observation in vitro of how neuroblasts migrate: medulla and cochleovestibular ganglion of the chick embryo. Exp. Neurol. 111, 228–243 (1991).

    CAS  PubMed  Google Scholar 

  19. Hager, G., Dodt, H.-U., Sieglgansberger, W. & Liesi, P. Novel forms of neuronal migration in the rat cerebellum. J. Neurosci. Res. 40, 207–219 (1995).

    CAS  PubMed  Google Scholar 

  20. Gray, G. E. & Sanes, J. R. Migratory paths and phenotypic choices of clonally related cells in the avian optic tectum. Neuron 6, 211–225 (1991).

    CAS  PubMed  Google Scholar 

  21. Morest, D. K. A study of neurogenesis in the forebrain of opossum pouch young. Z. Anat. Entwicklungsgesch. 130, 265–305 (1970).

    CAS  PubMed  Google Scholar 

  22. Brittis, P. A., Meiri, K., Dent, E. & Silver, J. The earliest pattern of neuronal differentiation and migration in the mammalian central nervous system. Exp. Neurol. 133, 1–12 (1995).

    Google Scholar 

  23. Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O. L. & Pearlman, A. L. Two modes of radial migration in early development of the cerebral cortex. Nature Neurosci. 4, 143–150 (2001).

    CAS  PubMed  Google Scholar 

  24. Feng, Y. & Walsh, C. A. Protein–protein interactions, cytoskeletal regulation and neuronal migration. Nature Rev. Neurosci. 2, 408–416 (2001).

    CAS  Google Scholar 

  25. Wynshaw-Boris, A. & Gambello, M. J. LIS1 and dynein motor function in neuronal migration and development. Genes Dev. 15, 639–651 (2001).

    CAS  PubMed  Google Scholar 

  26. Rice, D. S. & Curran, T. Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24, 1005–1039 (2001).

    CAS  PubMed  Google Scholar 

  27. Herz, J. The LDL receptor gene family: (un)expected signal transducers in the brain. Neuron 29, 571–581 (2001).

    CAS  PubMed  Google Scholar 

  28. Cooper, J. A. & Howell, B. W. Lipoprotein receptors: signaling functions in the brain? Cell 97, 671–674 (1999).

    CAS  PubMed  Google Scholar 

  29. Bar, I., Lambert de Rouvroit, C. & Goffinet, A. M. The evolution of cortical development. An hypothesis based on the role of the Reelin signaling pathway. Trends Neurosci. 23, 633–638 (2000).

    CAS  PubMed  Google Scholar 

  30. Dhavan, R. & Tsai, L. H. A decade of Cdk5. Nature Rev. Mol. Cell Biol. 2, 749–759 (2002).

    Google Scholar 

  31. Barkovich, A. J., Koch, T. K. & Carrol, C. L. The spectrum of lissencephaly: report of ten patients analyzed by magnetic resonance imaging. Ann. Neurol. 30, 139–146 (1991).

    CAS  PubMed  Google Scholar 

  32. Dobyns, W. B. & Truwit, C. L. Lissencephaly and other malformations of cortical development: 1995 update. Neuropediatrics 26, 132–147 (1995).

    CAS  PubMed  Google Scholar 

  33. Dobyns, W. B. et al. X-linked malformations of neuronal migration. Neurology 47, 331–339 (1996).

    CAS  PubMed  Google Scholar 

  34. Dobyns, W. B., Stratton, R. F. & Greenberg, F. Syndromes with lissencephaly. I. Miller–Dieker and Norman–Roberts syndromes and isolated lissencephaly. Am. J. Med. Genet. 18, 509–526 (1984).

    CAS  PubMed  Google Scholar 

  35. Dobyns, W. B., Elias, E. R., Newlin, A. C., Pagon, R. A. & Ledbetter, D. H. Causal heterogeneity in isolated lissencephaly. Neurology 42, 1375–1388 (1992).

    CAS  PubMed  Google Scholar 

  36. Dobyns, W. B., Carrozzo, R. & Ledbetter, D. H. Frequent deletions of the LIS1 gene in classic lissencephaly. Ann. Neurol. 36, 489–490 (1994).

    Google Scholar 

  37. Chong, S. S. et al. A revision of the lissencephaly and Miller–Dieker syndrome critical regions in chromosome 17p13.3. Hum. Mol. Genet. 6, 147–155 (1997).

    CAS  PubMed  Google Scholar 

  38. Reiner, O. et al. Isolation of a Miller–Dieker lissencephaly gene containing G-protein β-subunit-like repeats. Nature 364, 717–721 (1993).This study isolates LIS1 as the defective gene in Miller–Dieker lissencephaly.

    CAS  PubMed  Google Scholar 

  39. Lo Nigro, C. et al. Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller–Dieker syndrome. Hum. Mol. Genet. 6, 157–164 (1997).

    CAS  PubMed  Google Scholar 

  40. Pilz, D. T. et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different paterns of malformation. Hum. Mol. Genet. 7, 2029–2037 (1998).

    CAS  PubMed  Google Scholar 

  41. des Portes, V. et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92, 51–61 (1998).

    CAS  PubMed  Google Scholar 

  42. Gleeson, J. G. et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92, 63–72 (1998).The studies in references 41 and 42 identify DCX as a protein that is mutated in X-linked lissencephaly.

    CAS  PubMed  Google Scholar 

  43. Gleeson, J. G., Lin, P. T., Flanagan, L. A. & Walsh, C. A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257–271 (1999).

    CAS  PubMed  Google Scholar 

  44. Matsumoto, N. et al. Mutation analysis of the DCX gene and genotype/phenotype correlation in subcortical band heterotopa. Eur. J. Hum. Genet. 9, 5–12 (2001).

    CAS  PubMed  Google Scholar 

  45. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nature Genet. 19, 333–339 (1998).

    CAS  PubMed  Google Scholar 

  46. Paylor, R. et al. Impaired learning and motor behavior in heterozygous Pafah1b1 (Lis1) mutant mice. Learn. Mem. 6, 521–537 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fleck, M. W. et al. Hippocampal abnormalities in Lis1 mutant mice provide a neuronal basis for epileptogenesis in neuronal migration defects. J. Neurosci. 20, 2439–2450 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cahana, A. et al. Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc. Natl Acad. Sci. USA 98, 6429–6434 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Neer, E. J., Schmidt, C. J., Nambudripad, R. & Smith, T. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 (1994).

    CAS  PubMed  Google Scholar 

  50. Garcia-Higuera, I. et al. Folding of proteins with WD-repeats: comparison of six members of the WD-repeat superfamily to the G protein β subunit. Biochemistry 35, 13985–13994 (1996).

    CAS  PubMed  Google Scholar 

  51. Hattori, M., Adachi, H., Tsujimoto, M., Arai, H. & Inoue, K. Miller–Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase. Nature 370, 216–218 (1994).

    CAS  PubMed  Google Scholar 

  52. Sheffield, P. J. et al. Homologs of the α- and β-subunits of mammalian brain platelet-activating factor acetylhydrolase Ib in the Drosophila melanogaster genome. Proteins 39, 1–8 (2000).

    CAS  PubMed  Google Scholar 

  53. Sapir, T., Elbaum, M. & Reiner, O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J. 16, 6977–6984 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Coquelle, F. M. et al. LIS-1: CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. (in the press).

  55. Morris, R. N. Nuclear migration: from fungi to the mammalian brain. J. Cell Biol. 148, 1097–1101 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, Z., Steward, R. & Luo, L. Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nature Cell Biol. 2, 767–775 (2000).

    Google Scholar 

  57. Morris, N. R. Mitotic mutants of Aspergillus nidulans. Genet. Res. 26, 237–254 (1975).

    CAS  PubMed  Google Scholar 

  58. Xiang, X., Zuo, W., Efimov, V. P. & Morris, N. R. Isolation of a new set of Aspergillus nidulans mutants defective in nuclear migration. Curr. Genet. 35, 626–630 (1999).

    CAS  PubMed  Google Scholar 

  59. Oakley, B. R. & Morris, N. R. Nuclear movement is β-tubulin-dependent in Aspergillus nidulans. Cell 19, 255–262 (1980).

    CAS  PubMed  Google Scholar 

  60. Xiang, X. & Morris, N. R. Hyphal tip growth and nuclear migration. Curr. Opin. Microbiol. 2, 636–640 (1999).

    CAS  PubMed  Google Scholar 

  61. Xiang, X., Osmani, A. H., Osmani, S. A., Xin, M. & Morris, N. R. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol. Biol. Cell 6, 297–310 (1995).This study provided the first link between LIS1 and cytoplasmic dynein.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiang, X., Beckwith, S. M. & Morris, N. R. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl Acad. Sci. USA 91, 2100–2104 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Beckwith, S. M., Roghi, C. H., Liu, B. & Morris N. R. The '8-kD' cytoplasmic dynein light chain is required for nuclear migration and for dynein heavy chain localization in Aspergillus nidulans. J. Cell Biol. 143, 1239–1247 (1998).

    PubMed  PubMed Central  Google Scholar 

  64. Willins, D. A., Liu, B., Xiang, X. & Morris, N. R. Mutations in the heavy chain of cytoplasmic dynein suppress the nudF nuclear migration mutation of Aspergillus nidulans. Mol. Gen. Genet. 255, 194–200 (1997).

    CAS  PubMed  Google Scholar 

  65. Hoffmann, B., Zuo, W., Liu, A. & Morris, N. R. The LIS1-related protein NudF of Aspergillus nidulans and its interaction partner NudE bind directly to specific subunits of dynein and dynactin and to α- and γ-tubulin. J. Biol. Chem. 276, 38877–38884 (2001).

    CAS  PubMed  Google Scholar 

  66. Efimov, V. P. & Morris, N. R. The LIS1-related NUDF protein of Aspergillus nidulans interacts with the coiled-coil domain of the NUDE/RO11 protein. J. Cell Biol. 150, 681–688 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Niethammer, M. et al. NUDEL is a novel Cdk5 substrate that assocciates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711 (2000).

    CAS  PubMed  Google Scholar 

  68. Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult central nervous system. Neuron 28, 681–696 (2000).

    CAS  PubMed  Google Scholar 

  69. Feng, Y. et al. LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 28, 665–679 (2000).

    CAS  PubMed  Google Scholar 

  70. Kitagawa, M. et al. Direct association of LIS1, the lissencephaly gene product, with a mammalian homologue of a fungal nuclear distribution protein, rNUDE. FEBS Lett. 479, 57–62 (2000).

    CAS  PubMed  Google Scholar 

  71. Liu, Z., Xie, T. & Steward, R. Lis1, the Drosophila homologue of a human lissencephaly disease gene, is required for germline cell division and oocyte differentiation. Development 126, 4477–4488 (1999).

    CAS  PubMed  Google Scholar 

  72. Swan, A., Nguyen, T. & Suter, B. Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nature Cell Biol. 1, 444–449 (1999).

    CAS  PubMed  Google Scholar 

  73. McGrail, M. & Hays, T. S. The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124, 2409–2419 (1997).

    CAS  PubMed  Google Scholar 

  74. McGrail, M. et al. Regulation of cytoplasmic dynein function in vivo by the Drosophila Glued complex. J. Cell Biol. 131, 411–425 (1995).

    CAS  PubMed  Google Scholar 

  75. Smith, D. S. et al. Regulation of cytoplasmic dynein behavior and mirotubule organization by mammalian Lis1. Nature Cell Biol. 2, 767–775 (2000).

    CAS  PubMed  Google Scholar 

  76. Faulkner, N. E. et al. A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nature Cell Biol. 2, 784–791 (2000).

    CAS  PubMed  Google Scholar 

  77. McConnell, S. K. & Kaznowski, C. E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 (1991).

    CAS  PubMed  Google Scholar 

  78. Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).

    CAS  PubMed  Google Scholar 

  79. Francis, F. et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256 (1999).

    CAS  PubMed  Google Scholar 

  80. Horesh, D. et al. Doublecortin, a stabilizer of microtubules. Hum. Mol. Genet. 8, 1599–1610 (1999).

    CAS  PubMed  Google Scholar 

  81. Caspi, M., Atlas, R., Kantor, A., Sapir, T. & Reiner, O. Interaction between LIS1 and doublecortin, two lissencephaly gene products. Hum. Mol. Genet. 9, 2205–2213 (2000).

    CAS  PubMed  Google Scholar 

  82. D'Arcangelo, G. et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).This study identifies Reln as the protein that is mutated in reeler mice.

    CAS  PubMed  Google Scholar 

  83. Sheldon, M. et al. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389, 668–669 (1997).

    Google Scholar 

  84. Howell, B. W., Hawkes, R., Soriano, P. & Cooper, J. A. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737 (1997).

    CAS  PubMed  Google Scholar 

  85. Ware, M. L. et al. Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19, 239–249 (1997).References 83–85 establish the importance of Dab1 in neocortical development.

    CAS  PubMed  Google Scholar 

  86. Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999).This study places Vldlr and ApoER2 in the Reln signalling pathway of neocortical development.

    CAS  PubMed  Google Scholar 

  87. Caviness, V. S. Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H] thymidine autoradiography. Brain Res. 256, 293–302 (1982).

    PubMed  Google Scholar 

  88. Sheppard, A. M. & Pearlman, A. L. Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J. Comp. Neurol. 378, 173–179 (1997).

    CAS  PubMed  Google Scholar 

  89. Krieger, M. & Herz, J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem. 63, 601–637 (1994).

    CAS  PubMed  Google Scholar 

  90. Brandes, C. et al. Avian and murine LR8B and human apolipoprotein E receptor 2: differentially spliced products from corresponding genes. Genomics 42, 185–191 (1997).

    CAS  PubMed  Google Scholar 

  91. Howell, B. W., Gertler, F. B. & Cooper, J. A. Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J. 16, 121–132 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Gertler, F. B., Hill, K. K., Clark, M. J. & Hoffmann, F. M. Dosage-sensitive modifiers of Drosophila abl tyrosine kinase function: prospero, a regulator of axonal outgrowth, and disabled, a novel tyrosine kinase substrate. Genes Dev. 7, 441–453 (1993).

    CAS  PubMed  Google Scholar 

  93. Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).

    CAS  PubMed  Google Scholar 

  94. D'Arcangelo, G. et al. Reelin is a ligand for lipoprotein receptors. Neuron 24, 471–479 (1999).

    CAS  PubMed  Google Scholar 

  95. Hiesberger, T. et al. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24, 481–489 (1999).References 94 and 95 provide molecular evidence that lipoprotein receptors are receptors for Reln.

    CAS  PubMed  Google Scholar 

  96. Trommsdorff, M., Borg, J. P., Margolis, B. & Herz, J. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273, 33556–33560 (1998).

    CAS  PubMed  Google Scholar 

  97. Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B. & Cooper, J. A. The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol. Cell. Biol. 19, 5179–5188 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rice, D. S. et al. Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125, 3719–3729 (1998).

    CAS  PubMed  Google Scholar 

  99. Keshvara, L., Benhayon, D., Magdaleno, S. & Curran, T. Identification of reelin-induced sites of tyrosyl phosphorylation on disabled 1. J. Biol. Chem. 276, 16008–16014 (2001).

    CAS  PubMed  Google Scholar 

  100. Howell, B. W., Herrick, T. M., Hildebrand, J. D., Zhang, Y. & Cooper, J. A. Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr. Biol. 10, 877–885 (2000).

    CAS  PubMed  Google Scholar 

  101. Howell, B. W., Herrick, T. M. & Cooper, J. A. Reelin-induced tyrosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13, 643–648 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Magdaleno, S., Keshvara, L. & Curran, T. Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron 33, 573–586 (2002).

    CAS  PubMed  Google Scholar 

  103. Senzaki, K., Ogawa, M. & Yagi, T. Proteins of the CNR family are multiple receptors for Reelin. Cell 99, 635–647 (1999).

    CAS  PubMed  Google Scholar 

  104. Pierschbacher, M. D. & Ruoslahti, E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc. Natl Acad. Sci. USA 81, 5985–5988 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kohmura, N. et al. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20, 1137–1151 (1998).

    CAS  PubMed  Google Scholar 

  106. Schwartz, M. A. Integrin signaling revisited. Trends Cell Biol. 11, 466–469 (2001).

    CAS  PubMed  Google Scholar 

  107. Tsai, L.-H., Takahashi, T., Caviness, V. S. Jr & Harlow, E. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119, 1029–1040 (1993).

    CAS  PubMed  Google Scholar 

  108. Lew, J. et al. Neuronal cdc2-like kinase is a complex of cyclin-dependent kinase 5 and a novel brain-specific regulatory subunit. Nature 371, 423–425 (1994).

    CAS  PubMed  Google Scholar 

  109. Tsai, L.-H., Delalle, I., Caviness, V. S. Jr, Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419–423 (1994).

    CAS  PubMed  Google Scholar 

  110. Ishiguro, K. et al. Identification of the 23 kDa subunit of Tau protein kinase II as a putative activator of CDK5 in bovine brain. FEBS Lett. 342, 203–208 (1994).

    CAS  PubMed  Google Scholar 

  111. Oshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal coticogenesis, neuronal pathology and perinatal death. Proc. Natl Acad. Sci. USA 93, 11173–11178 (1996).This study establishes an in vivo role for Cdk5 in neocortical development.

    Google Scholar 

  112. Gilmore, E. C., Ohshima, T., Goffinet, A. M., Kulkarni, A. B. & Herrup, K. Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci. 18, 6370–6377 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).This study provides evidence that p35 is a key activator of Cdk5 in neocortical development.

    CAS  PubMed  Google Scholar 

  114. Kwon, Y. T. & Tsai, L. H. A novel disruption of cortical development in p35(−/−) mice distinct from reeler. J. Comp. Neurol. 395, 510–522 (1998).

    CAS  PubMed  Google Scholar 

  115. Ko, J. et al. p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J. Neurosci. 21, 6758–6771 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M. & Tsai, L. H. Regulation of N-cadherin-mediated adhesion by the p35–Cdk5 kinase. Curr. Biol. 10, 363–372 (2000).

    CAS  PubMed  Google Scholar 

  117. Kato, G. & Maeda, S. Neuron-specific Cdk5 kinase is responsible for mitosis-independent phosphorylation of c-Src at Ser75 in human Y79 retinoblastoma cells. J. Biochem. (Tokyo) 126, 957–961 (1999).

    CAS  Google Scholar 

  118. Nikolic, M., Chou, M. M., Lu, W., Mayer, B. J. & Tsai, L. H. The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395, 194–198 (1998).

    CAS  PubMed  Google Scholar 

  119. Rashid, T., Banerjee, M. & Nikolic, M. Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J. Biol. Chem. 276, 49043–49052 (2001).

    CAS  PubMed  Google Scholar 

  120. Fox, J. W. et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21, 1315–1325 (1998).

    CAS  PubMed  Google Scholar 

  121. Kobayashi, S. et al. A cdc2-related kinase PSSALRE/ cdk5 is homologous with the 30 kDa subunit of tau protein kinase II, a proline-directed protein kinase associated with microtubules. FEBS Lett. 335, 171–175 (1993).

    CAS  PubMed  Google Scholar 

  122. Pigino, G., Paglini, G., Ulloa, L., Avila, J. & Caceres, A. Analysis of the expression, distribution and function of cyclin dependent kinase 5 (cdk5) in developing cerebellar macroneurons. J. Cell Sci. 110, 257–270 (1997).

    CAS  PubMed  Google Scholar 

  123. Nikolic, M., Dudek, H., Kwon, Y. T., Ramos, Y. F. & Tsai, L. H. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10, 816–825 (1996).

    CAS  PubMed  Google Scholar 

  124. Zuckerberg, L. R. et al. Cables links Cdk5 and c-abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633–646 (2000).

    Google Scholar 

  125. Ohshima, T. et al. Synergistic contributions of cyclin-dependant kinase 5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain. Proc. Natl Acad. Sci. USA 98, 2764–2769 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Vasioukhin, V. & Fuchs, E. Actin dynamics and cell–cell adhesion in epithelia. Curr. Opin. Cell Biol. 13, 76–84 (2001).

    CAS  PubMed  Google Scholar 

  127. Ligon, L. A., Karki, S., Tokito, M. & Holzbaur, E. L. Dynein binds to β-catenin and may tether microtubules at adherens junctions. Nature Cell Biol. 3, 913–917 (2001).

    CAS  PubMed  Google Scholar 

  128. Hong, S. E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26, 93–96 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amitabh Gupta or Li-Huei Tsai.

Related links

Related links

DATABASES

LocusLink

β-catenin

Abl

Cables

Cdk5

Cdk5r

Cdk5r2

CLIP-170

Cnr family

cytoplasmic dynein heavy chain

Dab1

DCX

Dcx

Dhc64C

Disabled

enabled

Enah

fax

LIS1

Lis1 (fly)

Lis1 (mouse)

Lrp8

Nude (mouse)

Nude (rat)

Nudel

PAFAH1B

prospero

Reln

Vldlr

Mouse Genome Informatics

reeler

scrambler

yotari

OMIM

isolated lissencephaly sequence

lissencephaly

lissencephaly with cerebellar hypoplasia

Miller–Dieker syndrome

FURTHER INFORMATION

Encyclopedia of Life Sciences

Cerebral cortex development

Li Huei Tsai's lab

Anthony Wynshaw-Boris's lab

Glossary

NEOCORTEX

The most recently evolved part of the cerebral cortex. It is believed to orchestrate high-level motor, sensory and cognitive functions.

RADIAL DIRECTION

The movement of neurons from the inner to the outer brain surface. The inner brain surface lines the brain ventricles, and the outer brain surface lines the pia.

TANGENTIAL DIRECTION

The movement of neurons parallel to the inner or outer brain surface.

PIAL SURFACE

The outer brain surface (the pia is a membrane that covers the brain underneath the skull).

LOCOMOTION

A cell movement along glial fibre tracts in which the length of the leading process of a cell is maintained, as the cell soma and the leading edge move in concert.

RADIAL GLIA CELL

Precursor cell of the developing central nervous system (CNS). They give rise to glia cells (specialized connective tissue cells of the CNS) and also differentiate into neurons.

NUCLEAR TRANSLOCATION

A neuronal movement that is independent of glial fibre tracts, in which the cell nucleus moves towards the leading edge, such that the leading process of the cell (the distance between the apex of the cell soma and the leading edge) shortens over time.

AGYRIA

The absence of gyri (folds in the surface of the brain).

PACHYGYRIA

A reduced number of broadened gyri.

HETEROTOPIA

A group of abnormally placed cells. In the context of neuronal-migration defects, it refers to cells that are out of place in the cortex in either the grey or the white matter.

SUBCORTICAL BAND HETEROTOPIA

(SBH). A group of heterotopic neurons that form in the white matter.

WD40 REPEAT

A conserved finger-like structural motif that consists of repeats of tryptophan (W) and aspartic acid (D). In LIS1, there are seven WD40 repeats that are postulated to assume a 'propeller wheel' configuration similar to other WD40 repeat proteins.

DYNEIN

A minus-end-directed microtubule motor protein that can move along microtubules and carry cell cargo along them towards the cell centre, where the minus ends of the microtubules are positioned. When it is tethered in the periphery to the plasma membrane or to the non-microtubule cytoskeleton, it can transport cell cargo towards the cell periphery.

NUCLEOKINESIS

A process in which nuclei migrate towards the tips of the developing hyphae of Aspergillus nidulans under conditions of nutrient deprivation. This migration of the nuclei is an example of nuclear translocation and is disrupted in nuclear distribution (nud) mutants.

LEADING EDGE

The thin margin of a lamellipodium that spans the area of the cell from the plasma membrane to about 1 μm back into the lamellipodium. Lamellipodia are flattened, sheet-like projections from the surface of a cell, which are often associated with cell migration.

CENTROSOME

The main microtubule-organizing centre of animal cells.

RGD MOTIF

A peptide motif that consists of the amino acids arginine (R), glycine (G) and aspartate (D), which is found in many ligands that bind to integrins.

N-CADHERINS

Adhesion molecules that bind to each other in a calcium-dependent manner, and thereby connect nerve cells to each other. N-cadherin is stabilized on the cell surface by β-catenin, which links N-cadherin to the actin cytoskeleton.

ADHERENS JUNCTIONS

Points of cell–cell contact. In adherens junctions, a member of the cadherin family usually binds to β-catenin, which in turn is linked to the cortical actin cytoskeleton through α-catenin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Tsai, LH. & Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nat Rev Genet 3, 342–355 (2002). https://doi.org/10.1038/nrg799

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing