Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human genetics and disease

Mouse models of male infertility

Key Points

  • Male infertility accounts for 5–7% of infertility in human couples. Treatment so far is limited and, in most cases, the couples have to resort to IVF techniques that circumvent rather than treat this problem.

  • Many environmental, behavioural and genetic factors affect male fertility, with the genetic contribution estimated at 60%.

  • Spermatogenesis is a complex process that involves stem-cell renewal, genome reorganization and genome repackaging that culminates in the production of motile gametes.

  • Because of the complex interaction between the soma and the germline during spermatogenesis, the process cannot be recapitulated in vitro.

  • Although there are differences between spermatogenesis in mouse and man, the similarities are sufficient to use the mouse as a model of human spermatogenesis.

  • Mouse mutants have been invaluable in obtaining information on all aspects of spermatogenesis, at both fetal and post-natal stages.

  • Although we have a long way to go before we can treat male infertility, techniques developed in the mouse, such as germ-cell transplantation have already found their way to the clinic.

Abstract

Spermatogenesis is a complex process that involves stem-cell renewal, genome reorganization and genome repackaging, and that culminates in the production of motile gametes. Problems at all stages of spermatogenesis contribute to human infertility, but few of them can be modelled in vitro or in cell culture. Targeted mutagenesis in the mouse provides a powerful method to analyse these steps and has provided new insights into the origins of male infertility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of spermatogenesis.
Figure 2: Organization of the testis.
Figure 3: Hormonal regulation of spermatogenesis.

Similar content being viewed by others

References

  1. De Kretser, D. M. & Baker, H. W. Infertility in men: recent advances and continuing controversies. J. Clin. Endocrinol. Metab. 84, 3443–3450 (1999).

    CAS  PubMed  Google Scholar 

  2. Nygren, K. G. & Andersen, A. N. Results generated from European registers by ESHRE. European Society of Human Reproduction and Embryology. Hum. Reprod. 16, 2459–2471 (1998).

    Article  Google Scholar 

  3. Lilford, R., Jones, A. M., Bishop, D. T., Thornton, J. & Mueller, R. Case–control study of whether subfertility in men is familial. BMJ 309, 570–573 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hackstein, J. H., Hochstenbach, R. & Pearson, P. L. Towards an understanding of the genetics of human male infertility: lessons from flies. Trends Genet. 16, 565–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. World Health Organization. WHO Laboratory Manual for the Examination of Human Semen and Sperm–Cervical Mucus Interaction (Cambridge Univ. Press, Cambridge, UK, 1992).

  6. Reijo, R. et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nature Genet. 10, 383–393 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Clermont, Y. The cycle of the seminiferous epithelium in man. Am. J. Anat. 112, 35–51 (1963).

    Article  CAS  PubMed  Google Scholar 

  8. Sharpe, R. M. in The Physiology of Reproduction 2nd Edn (eds Knobil, E. & Neill, J. D.) 1363–1434 (Raven, New York, 1994).

    Google Scholar 

  9. De Rooij, D. G. Proliferation and differentiation of spermatogonial stem cells. Reproduction 121, 347–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Ward, S. W. & Coffey, D. S. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol. Reprod. 44, 569–574 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Swain, A. & Lovell-Badge, R. Mammalian sex determination: a molecular drama. Genes Dev. 13, 755–767 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Luo, X., Ikeda, Y. & Parker, K. L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481–490 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Kierszenbaum, A. L. & Tres, L. L. Primordial germ cell–somatic cell partnership: a balancing cell signaling act. Mol. Reprod. Dev. 60, 277–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Nadler, J. J. & Braun, R. E. Fanconi anemia complementation group C is required for proliferation of murine primordial germ cells. Genesis 27, 117–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, N. C. et al. Mice with a targeted disruption of the Fanconi anemia homolog Fanca. Hum. Mol. Genet. 9, 1805–1811 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Koomen, M. et al. Reduced fertility and hypersensitivity to mitomycin C characterize Fancg/Xrcc9 null mice. Hum. Mol. Genet. 11, 273–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Besmer, P. et al. The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Development 1(Suppl.), 125–137 (1993).

    Google Scholar 

  18. Boettger-Tong, H. L. et al. Identification and sequencing the juvenile spermatogonial depletion critical interval on mouse chromosome 1 reveals the presence of eight candidate genes. Biochem. Biophys. Res. Commun. 288, 1129–1135 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Ruggiu, M. et al. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389, 73–77 (1997).This paper reports the knockout phenotype for Dazl in mice and shows that the absence of this cytoplasmic protein causes male and female infertility due to a loss of germ cells that enter meiosis. On the basis of this data, Dazl becomes a candidate for an autosomal infertility locus in humans.

    Article  CAS  PubMed  Google Scholar 

  20. Schrans-Stassen, B. H. G. J., Saunders, P. T. K., Cooke, H. J. & de Rooij, D. G. Nature of the spermatogenic arrest in Dazl−/− mice. Biol. Reprod. 65, 771–776 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Cohen, P. E. & Pollard, J. W. Regulation of meiotic recombination and prophase I progression in mammals. Bioessays 23, 996–1009 (2001).A useful review of genes involved in meiosis.

    Article  CAS  PubMed  Google Scholar 

  22. Diaz, R. L., Alcid, A. D., Berger, J. M. & Keeney, S. Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Mol. Cell. Biol. 22, 1106–1115 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keeney, S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Romanienko, P. J. & Camerini-Otero, R. D. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol. Cell 6, 975–987 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Baudat, F., Manova, K., Yuen, J. P., Jasin, M. & Keeney, S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6, 989–998 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida, K. et al. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol. Cell 1, 707–718 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Pittman, D. L. et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol. Cell 1, 697–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Odorisio, T., Rodriguez, T. A., Evans, E. P., Clarke, A. R. & Burgoyne, P. S. The meiotic checkpoint monitoring synapsis eliminates spermatocytes via p53-independent apoptosis. Nature Genet. 18, 257–261 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Mahadevaiah, S. K. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nature Genet. 27, 271–276 (2001).Classically, synapsis was thought to represent the final stages of a homology search that preceded recombination. Work in yeast indicated that this order of events did not apply and that DSBs and recombination preceded synapsis. This paper shows that this order applies to male mice and so, presumably, to all mammals.

    Article  CAS  PubMed  Google Scholar 

  31. Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 10, 2411–2422 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Barlow, C. et al. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development 125, 4007–4017 (1998).

    CAS  PubMed  Google Scholar 

  33. Moens, P. B. et al. The association of ATR protein with mouse meiotic chromosome cores. Chromosoma 108, 95–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. & Chen, D. J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276, 42462–42467 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Andegeko, Y. et al. Nuclear retention of ATM at sites of DNA double strand breaks. J. Biol. Chem. 276, 38224–38230 (2001).

    CAS  PubMed  Google Scholar 

  36. Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).This paper reports the phenotype of the H2ax -knockout mouse. Although suprisingly mild, the phenotype includes genomic instability and increased radiation sensitivity. Female mice are fertile but with reduced litter sizes; however, male mice are sterile with arrest at pachytene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raymond, C. S., Murphy, M. W., O'Sullivan, M. G., Bardwell, V. J. & Zarkower, D. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev. 14, 2587–2595 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ottolenghi, C. & McElreavey, K. Deletions of 9p and the quest for a conserved mechanism of sex determination. Mol. Genet. Metab. 71, 397–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Kleene, K. C. A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mech. Dev. 106, 3–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Blendy, J. A., Kaestner, K. H., Weinbauer, G. F., Nieschlag, E. & Schutz, G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 380, 162–165 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Nantel, F. et al. Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380, 159–162 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Behr, R. & Weinbauer, G. F. CREM activator and repressor isoforms in human testis: sequence variations and inaccurate splicing during impaired spermatogenesis. Mol. Hum. Reprod. 6, 967–972 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Martianov, I. et al. Late arrest of spermiogenesis and germ cell apoptosis in mice lacking the TBP-like TLF/TRF2 gene. Mol. Cell 7, 509–515 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Martianov, I. et al. Distinct functions of TBP and TLF/TRF2 during spermatogenesis: requirement of TLF for heterochromatic chromocenter formation in haploid round spermatids. Development 129, 945–955 (2002).

    CAS  PubMed  Google Scholar 

  45. Lawrence, C. The RAD6 repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays 16, 253–258 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Koken, M. H. M. et al. Expression of the ubiquitin-conjugating DNA repair enzymes HHR6A and B suggests a role in spermatogenesis and chromatin modification. Dev. Biol. 173, 119–132 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Roest, H. P. et al. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86, 799–810 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Heideran, M. & Kistler, W. Isolation of a cDNA clone for transition protein 1 (TP1), a major chromosomal protein of mammalian spermatids. Gene 54, 281–284 (1987).

    Article  Google Scholar 

  49. Kleene, K. & Flynn, J. Characterisation of a cDNA clone encoding a basic protein TP2, involved in chromatin condensation in the mouse. J. Biol. Chem. 262, 17272–17277 (1987).

    CAS  PubMed  Google Scholar 

  50. Mali, P. et al. Stage-specific expression of nucleoprotein mRNAs during rat and mouse spermiogenesis. Reprod. Fertil. Dev. 1, 369–382 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Steger, K. et al. Round spermatids from infertile men exhibit decreased protamine-1 and -2 mRNA. Hum. Reprod. 16, 709–716 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Carrell, D. T. & Liu, L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J. Androl. 22, 604–610 (2001).

    CAS  PubMed  Google Scholar 

  53. Cho, C. et al. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nature Genet. 28, 82–86 (2001).The authors show that normal expression of both protamines 1 and 2 is essential for compaction of DNA during spermiogenesis. They confirm that protamine expression is essential for male fertility and create a mouse model for defects in DNA compaction.

    CAS  PubMed  Google Scholar 

  54. Ha, H., Van Wijnen, A. J. & Hecht, N. B. Tissue specific protein–DNA interactions of the mouse protamine 2 gene promoter. J. Cell. Biochem. 64, 94–105 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Zhao, M. et al. Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol. Cell. Biol. 21, 7243–7255 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu, R. N., Ito, M. & Jameson, J. L. The murine Dax-1 promoter is stimulated by SF-1 (steroidogenic factor-1) and inhibited by COUP-TF (chicken ovalbumin upstream promoter- transcription factor) via a composite nuclear receptor-regulatory element. Mol. Endocrinol. 12, 1010–1022 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Yu, Y. E. et al. Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc. Natl Acad. Sci. USA 97, 4683–4688 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kierszenbaum, A. L. Transition nuclear proteins during spermiogenesis: unrepaired DNA breaks not allowed. Mol. Reprod. Dev. 58, 357–358 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Adham, I. M. et al. Teratozoospermia in mice lacking the transition protein 2 (Tnp2). Mol. Hum. Reprod. 7, 513–520 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Tourtellotte, W. G., Nagarajan, R., Auyeung, A., Mueller, C. & Milbrandt, J. Infertility associated with incomplete spermatogenic arrest and oligozoospermia in Egr4-deficient mice. Development 126, 5061–5071 (1999).

    CAS  PubMed  Google Scholar 

  61. Yanaka, N. et al. Insertional mutation of the murine kisimo locus caused a defect in spermatogenesis. J. Biol. Chem. 275, 14791–14794 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Barratt, C. L. & Publicover, S. J. Interaction between sperm and zona pellucida in male fertility. Lancet 358, 1660–1662 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Cho, C. et al. Fertilization defects in sperm from mice lacking fertilin-β. Science 281, 1857–1859 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Nishimura, H., Cho, C., Branciforte, D. R., Myles, D. G. & Primakoff, P. Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin-β. Dev. Biol. 233, 204–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. McLachlan, R. I. et al. Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Rec. Prog. Horm. Res. 57, 149–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Cattanach, B. M., Iddon, C. A., Charlton, H. M., Chiappa, S. A. & Fink, G. Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 269, 338–340 (1977).

    Article  CAS  PubMed  Google Scholar 

  67. Achermann, J. C., Ozisik, G., Meeks, J. J. & Jameson, J. L. Genetic causes of human reproductive disease. J. Clin. Endocrinol. Metab. 87, 2447–2454 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Allan, C. M. et al. A novel transgenic model to characterize the specific effects of follicle-stimulating hormone on gonadal physiology in the absence of luteinizing hormone actions. Endocrinology 142, 2213–2220 (2001).To investigate the roles of FSH in the absence of LH, a tandem transgene that expresses both subunits of FSH was introduced into hpg mice that lack endogenous gonadotrophins: some germ-cell development occurred and was assumed to result from the stimulation of Sertoli-cell function by FSH in the absence of testosterone.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, F. P., Poutanen, M., Wilbertz, J. & Huhtaniemi, I. Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol. Endocrinol. 15, 172–183 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Krishnamurthy, H., Danilovich, N., Morales, C. R. & Sairam, M. R. Qualitative and quantitative decline in spermatogenesis of the follicle-stimulating hormone receptor knockout (FORKO) mouse. Biol. Reprod. 62, 1146–1159 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Moyle, W. R. & Ramachandran, J. Effect of LH on steroidogenesis and cyclic AMP accumulation in rat Leydig cell preparations and mouse tumor Leydig cells. Endocrinology 93, 127–134 (1973).

    Article  CAS  PubMed  Google Scholar 

  72. Charest, N. J. et al. A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Mol. Endocrinol. 5, 573–581 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Ghadessy, F. J. et al. Oligospermic infertility associated with an androgen receptor mutation that disrupts interdomain and coactivator (TIF2) interactions. J. Clin. Invest. 103, 1517–1525 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Robertson, K. et al. Impairment of spermatogenesis in mice lacking a functional aromatase (CYP19) gene. Proc. Natl Acad. Sci. USA 96, 7986–7991 (1999).Male mice that are unable to synthesize oestrogens from androgens develop late-onset infertility, including apoptosis of round spermatids. This study provides the best evidence that oestrogens are essential to germ-cell maturation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Turner, K. J. et al. Development and validation of a new monoclonal antibody to mammalian aromatase. J. Endocrinol. 172, 21–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Grumbach, M. M. & Auchus, R. J. Estrogen: consequences and implications of human mutations in synthesis and action. J. Clin. Endocrinol. Metab. 84, 4677–4694 (1999).

    CAS  PubMed  Google Scholar 

  77. Eddy, E. M. et al. Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology 137, 4796–4805 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Dupont, S. et al. Effect of single and compound knockouts of estrogen receptors α (ERα) and b (ERb) on mouse reproductive phenotypes. Development 127, 4277–4291 (2000).

    CAS  PubMed  Google Scholar 

  79. Krege, J. et al. Generation and reproductive phenotypes of mice lacking estrogen receptor b. Proc. Natl Acad. Sci. USA 95, 15677–15682 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Griswold, M. D. Interactions between germ cells and Sertoli cells in the testis. Biol. Reprod. 52, 211–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. de Kretser, D. M. et al. Inhibins, activins and follistatin: actions on the testis. Mol. Cell. Endocrinol. 180, 87–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. de Winter, J. P. et al. Activin is produced by rat Sertoli cells in vitro and can act as an autocrine regulator of Sertoli cell function. Endocrinology 132, 975–982 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Matzuk, M. M., Kumar, T. R. & Bradley, A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374, 356–360 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Kumar, T. R. et al. Male reproductive phenotypes in double mutant mice lacking both FSHβ and activin receptor IIA. Endocrinology 142, 3512–3518 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Matzuk, M. M., Finegold, M. J., Su, J. G., Hsueh, A. J. & Bradley, A. α-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360, 313–319 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Meng, X. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Meng, X., de Rooij, D. G., Westerdahl, K., Saarma, M. & Sariola, H. Promotion of seminomatous tumors by targeted overexpression of glial cell line-derived neurotrophic factor in mouse testis. Cancer Res. 61, 3267–3271 (2001).

    CAS  PubMed  Google Scholar 

  88. Loveland, K. L. & Schlatt, S. Stem cell factor and c-kit in the mammalian testis: lessons originating from mother nature's gene knockouts. J. Endocrinol. 153, 337–344 (1997).A useful general review on the role of the c-kit ligand and its receptor in male fertility.

    Article  CAS  PubMed  Google Scholar 

  89. Akama, T. O. et al. Germ cell survival through carbohydrate-mediated interaction with Sertoli cells. Science 295, 124–127 (2002).This paper shows that carbohydrate moieties are essential components of the interaction between Sertoli cells and germ cells. In the absence of an N -glycan, germ cells are released prematurely and the mice are infertile.

    Article  PubMed  Google Scholar 

  90. Zirkin, B. R. & Chen, H. Regulation of Leydig cell steroidogenic function during aging. Biol. Reprod. 63, 977–981 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Bakke, M., Zhao, L. & Parker, K. L. Approaches to define the role of SF-1 at different levels of the hypothalamic–pituitary–steroidogenic organ axis. Mol. Cell. Endocrinol. 179, 33–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Xiao, J., Liu, C. C., Chen, P. L. & Lee, W. H. RINT-1, a novel Rad50-interacting protein, participates in radiation-induced G(2)/M checkpoint control. J. Biol. Chem. 276, 6105–6111 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Meng, M. V. et al. Impaired spermatogenesis in men with congenital absence of the vas deferens. Hum. Reprod. 16, 529–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Dorin, J. R. et al. Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 359, 211–215 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Reynaert, I. et al. Morphological changes in the vas deferens and expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in control, ΔF508 and knockout CFTR mice during postnatal life. Mol. Reprod. Dev. 55, 125–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. O'Neal, W. K. et al. A severe phenotype in mice with a duplication of exon 3 in the cystic fibrosis locus. Hum. Mol. Genet. 2, 1561–1569 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Cooke, H. J. Y chromosome and male infertility. Rev. Reprod. 4, 5–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Mazeyrat, S. et al. A Y-encoded subunit of the translation initiation factor Eif2 is essential for mouse spermatogenesis. Nature Genet. 29, 49–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Kuroda-Kawaguchi, T. et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nature Genet. 29, 279–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Lahn, B. T., Pearson, N. M. & Jegalian, K. The human Y chromosome, in the light of evolution. Nature Rev. Genet. 2, 207–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Xu, E. Y., Moore, F. L. & Pera, R. A. A gene family required for human germ cell development evolved from an ancient meiotic gene conserved in metazoans. Proc. Natl Acad. Sci. USA 98, 7414–7419 (2001).Although the Y-linked DAZ genes have no counterpart outside the great apes autosomal homologues are found in flies, worms, frogs and mammals. All of them function in the germ line, as revealed by mutagenesis and RNAi approaches. These authors found a new homologue in mouse and human genomes, which is more similar to the Drosophila boule gene than the previously known DAZ homologue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Eberhart, C. G., Maines, J. Z. & Wasserman, S. A. Meiotic cell cycle requirement for a fly homologue of human deleted in azoospermia. Nature 381, 783–785 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Libby, B. J. et al. The mouse meiotic mutation mei1 disrupts chromosome synapsis with sexually dimorphic consequences for meiotic progression. Dev. Biol. 242, 174–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Stanford, W. L., Cohn, J. B. & Cordes, S. P. Gene-trap mutagenesis: past, present and beyond. Nature Rev. Genet. 2, 756–768 (2001).This paper describes the transplantation of cell suspensions made from the testis of one mouse into the testis of another that has been depleted of spermatogonia by chemical treatment; providing an assay for the number of stem cells in the injected population. In principle, the stem cells can be manipulated in various ways before injection.

    Article  CAS  PubMed  Google Scholar 

  105. Brinster, R. & Zimmermann, J. Spermatogenesis following male germ cell transplantation. Proc. Natl Acad. Sci. USA 94, 11298–11302 (1994).

    Article  Google Scholar 

  106. Ohta, H., Yomogida, K., Dohmae, K. & Nishimune, Y. Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development 127, 2125–2131 (2000).

    CAS  PubMed  Google Scholar 

  107. Mahato, D., Goulding, E. H., Korach, K. S. & Eddy, E. M. Spermatogenic cells do not require estrogen receptor-α for development or function. Endocrinology 141, 1273–1276 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Johnston, D. S., Russell, L. D., Friel, P. J. & Griswold, M. D. Murine germ cells do not require functional androgen receptors to complete spermatogenesis following spermatogonial stem cell transplantation. Endocrinology 142, 2405–2408 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Feng, L. X. et al. Generation and in vitro differentiation of a spermatogonial cell line. Science 297, 392–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Mcmanus, M. T. & Sharp, P. A. Gene silencing in mammals by small interfering RNAs. Nature Rev. Genet. 3, 737–747 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Thomson, A. B., Critchley, H. O. D., Kelner, C. J. & Wallace, W. H. Late reproductive sequelae following treatment of childhood cancer and options for fertility preservation. Best Practice Res. Endocrinol. Metab. 16, 311–334 (2002).

    Article  Google Scholar 

  112. O'Donnell, L., Robertson, K. M., Jones, M. E. & Simpson, E. R. Estrogen and spermatogenesis. Endocrine Rev. 22, 289–318 (2001).

    Article  CAS  Google Scholar 

  113. Huynh, T., Mollard, R. & Trounson, A. Selected genetic factors associated with male infertility. Hum. Reprod. Update 8, 183–198 (2002).

    Article  PubMed  Google Scholar 

  114. Yuan, L. et al. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell 5, 73–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Lipkin, S. M. et al. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nature Genet. 31, 385–390 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Lim. D. S. & Hasty, P. A. A mutation in mouse rad51 results in an early embroyonic lethal that is supressed by a mutation in p53. Mol. Cell. Biol. 16, 7113–7143.

  117. Kneitz, B. et al. MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 14, 1085–1097.

  118. Edelmann, W. et al. Nature Genetics. 21, 123–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Edelmann, W. et al. Meiotic pachytene arrest in MLH1-deficient mice. Cell 85, 1125–1134.

  120. Baker, S. M. et al. Male mice defective in the DNA mismatch gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82, 309–319.

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

activin

activin receptor

AR

Ar

Atm

ATM

Atr

AZFa

AZFc

Bol

Brca1

Brca2

CFTR

Crem

CREM

Cul3

Cyp19

cyritestin

Dazl

Dazl1

Dby10

Dmc1h

Dmrt1

DMRT1

Eif2s3y

Erg4

ESR1

ESR2

Facl3

Fanconi anaemia group C

Farsl

fertilin-β

FSH

Fshr

Gdnf

H2afx

inhibin

jsd

Kcne4

Kit

LH

LHR

Mm

Nr5a1

Prm1

Prm2

Rad51

Scg2

Serpine2

Smcy

Spo11

Sry

Sycp3

Theg

Tlf/Trf2

Tnp1

Tnp2

Ube2a

Ube2b

UBE2B

Ubely1

Usp9y

Uty

OMIM

ataxia telangiectasia

cystic fibrosis

Fanconi anaemia

Sertoli-cell-only syndrome

<i>Saccharomyces</i> Genome Database

RAD6

Glossary

RNAi

A phenomenon in which the expression of a gene is temporarily inhibited when a double-stranded complementary RNA is introduced into the organism.

SPERMATOGONIUM

A diploid male germ cell that divides mitotically to produce stem cells or cells that enter meiosis.

PITUITARY GLAND

An endocrine gland that is located at the base of the brain, and that produces hormones, such as growth hormone, luteinizing hormone, follicle stimulating hormone and thyroid stimulating hormone.

SEMINIFEROUS TUBULE

A structural unit in the adult testis; it consists of somatic Sertoli cells and germ cells at several developmental stages.

SPERMIOGENESIS

The stage of spermatogenesis during which spermatids undergo cell remodelling and DNA compaction.

SPERMIATION

The release of mature spermatozoa from the surface of the Sertoli cell into the lumen of the seminiferous tubule.

SPERMATOCYTE

A cell that is progressing through meiotic prophase.

SPERMATID

A post-meiotic, haploid germ cell.

ADRENAL GLAND

A gland located on top of the kidney that produces hormones that regulate aspects of physiology, such as the heart rate and blood pressure.

SYNAPTONEMAL COMPLEX

A structure that holds paired chromosomes together during prophase 1 of meiosis and that promotes genetic recombination.

CHECKPOINT

Quality-control points during the cell cycle that ensure that each phase of the cycle is completed successfully before the process is allowed to continue.

PROTAMINE

Small arginine-rich proteins that are deposited on DNA towards the end of sperminogenesis.

ACROSOME

This structure arises from the Golgi complex. It first develops in spermatids and eventually forms a cap structure over the nucleus in the mature spermatozoa.

TRANSITION PROTEINS

Small basic nuclear proteins that replace histones on germ cell DNA. When DNA compaction begins they, in turn, are replaced by protamines.

HAPLOINSUFFICIENCY

A phenotype that arises in diploid organisms owing to the loss of one functional copy of a gene.

GONOCYTES

Once the gonad has differentiated into a testis by forming seminiferous cords, primitive germ cells are referred to as gonocytes.

GENE TRAP

A DNA construct that contains a reporter gene sequence downstream of a splice acceptor site that is capable of integrating into random chromosomal locations in mouse. Integration of the gene trap into an intron allows the expression of a new mRNA containing one or more upstream exons followed by the reporter gene.

KNOCKING DOWN

Removing function of a gene in a transient way, such as by RNAi.

AUTOLOGOUS GERM-CELL TRANSPLANTATION

Transplantation of spermatogonial stem cells (As) from one animal into that of a recipient in which germ cells are missing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooke, H., Saunders, P. Mouse models of male infertility. Nat Rev Genet 3, 790–801 (2002). https://doi.org/10.1038/nrg911

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing