Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hirschsprung disease — integrating basic science and clinical medicine to improve outcomes

Key Points

  • Hirschsprung disease is a potentially fatal birth defect in which the enteric nervous system (ENS) is missing from the distal bowel

  • Hirschsprung disease is a non-Mendelian, multigenic, partially penetrant, genetic disease

  • Surgery to bypass the aganglionic bowel is life-saving, but not curative

  • Enterocolitis occurs commonly even after surgery and can be life-threatening

  • Non-genetic factors affect ENS development, suggesting some cases of Hirschsprung disease might be preventable

  • Regenerative medicine strategies such as stem cell therapy could provide new treatment options

Abstract

Hirschsprung disease is defined by the absence of enteric neurons at the end of the bowel. The enteric nervous system (ENS) is the intrinsic nervous system of the bowel and regulates most aspects of bowel function. When the ENS is missing, there are no neurally mediated propulsive motility patterns, and the bowel remains contracted, causing functional obstruction. Symptoms of Hirschsprung disease include constipation, vomiting, abdominal distension and growth failure. Untreated disease usually causes death in childhood because bloodstream bacterial infections occur in the context of bowel inflammation (enterocolitis) or bowel perforation. Current treatment is surgical resection of the bowel to remove or bypass regions where the ENS is missing, but many children have problems after surgery. Although the anatomy of Hirschsprung disease is simple, many clinical features remain enigmatic, and diagnosis and management remain challenging. For example, the age of presentation and the type of symptoms that occur vary dramatically among patients, even though every affected child has missing neurons in the distal bowel at birth. In this Review, basic science discoveries are linked to clinical manifestations of Hirschsprung disease, including partial penetrance, enterocolitis and genetics. Insights into disease mechanisms that might lead to new prevention, diagnostic and treatment strategies are described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The enteric nervous system.
Figure 2: The enteric nervous system and Hirschsprung disease.
Figure 3: Enteric nervous system precursors must fully colonize the fetal bowel to prevent Hirschsprung disease.
Figure 4: Optimal Hirschsprung disease risk assessment should incorporate genetic and clinical criteria.
Figure 5: Decision analysis for rectal biopsy.
Figure 6: Mechanisms underlying Hirschsprung-disease-associated enterocolitis.
Figure 7: Current and future Hirschsprung disease evaluation and management.

Similar content being viewed by others

References

  1. Hirschsprung, H. Stuhlträgheit neugeborener in folge von dilatation und hypertrophie des colons. Jahrbuch Kinderheilkunde Physische Erziehung (Berlin) 27, 1–7 (1888).

    Google Scholar 

  2. Corman, M. L. Classic articles in colonic and rectal surgery. Constipation in the newborn as a result of dilation and hypertrophy of the colon: Harald Hirschsprung, Jahrbuch für Kinderheilkunde, 1888. Dis. Colon Rectum 24, 408–410 (1981).

    Google Scholar 

  3. Furness, J. B., Callaghan, B. P., Rivera, L. R. & Cho, H. J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817, 39–71 (2014).

    PubMed  Google Scholar 

  4. Furness, J. B. The enteric nervous system. (Blackwell Publishing, 2006).

    Google Scholar 

  5. Odenwald, M. A. & Turner, J. R. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14, 9–21 (2017).

    CAS  PubMed  Google Scholar 

  6. Knowles, C. H., Lindberg, G., Panza, E. & De Giorgio, R. New perspectives in the diagnosis and management of enteric neuropathies. Nat. Rev. Gastroenterol. Hepatol. 10, 206–218 (2013).

    CAS  PubMed  Google Scholar 

  7. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    CAS  PubMed  Google Scholar 

  8. Grubisic, V. & Gulbransen, B. D. Enteric glia: the most alimentary of all glia. J. Physiol. 595, 557–570 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Sharkey, K. A. Emerging roles for enteric glia in gastrointestinal disorders. J. Clin. Invest. 125, 918–925 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Furness, J. B. Integrated neural and endocrine control of gastrointestinal function. Adv. Exp. Med. Biol. 891, 159–173 (2016).

    CAS  PubMed  Google Scholar 

  11. Vanner, S. et al. Fundamentals of neurogastroenterology: basic science. Gastroenterology 150, 1280–1291 (2016).

    Google Scholar 

  12. Hens, J., Vanderwinden, J. M., De Laet, M. H., Scheuermann, D. W. & Timmermans, J. P. Morphological and neurochemical identification of enteric neurones with mucosal projections in the human small intestine. J. Neurochem. 76, 464–471 (2001).

    CAS  PubMed  Google Scholar 

  13. Brookes, S. J. Classes of enteric nerve cells in the guinea-pig small intestine. Anat. Rec. 262, 58–70 (2001).

    CAS  PubMed  Google Scholar 

  14. Furness, J. B. Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. 81, 87–96 (2000).

    CAS  PubMed  Google Scholar 

  15. Latorre, R., Sternini, C., De Giorgio, R. & Greenwood-Van Meerveld, B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol. Motil. 28, 620–630 (2016).

    CAS  PubMed  Google Scholar 

  16. Psichas, A., Reimann, F. & Gribble, F. M. Gut chemosensing mechanisms. J. Clin. Invest. 125, 908–917 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Uesaka, T., Young, H. M., Pachnis, V. & Enomoto, H. Development of the intrinsic and extrinsic innervation of the gut. Dev. Biol. 417, 158–167 (2016).

    CAS  PubMed  Google Scholar 

  18. Camilleri, M. & Di Lorenzo, C. The brain-gut axis: from basic understanding to treatment of irritable bowel syndrome and related disorders. J. Pediatr. Gastroenterol. Nutr. 54, 446–453 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. Gonzalez-Arancibia, C. et al. What goes around comes around: novel pharmacological targets in the gut-brain axis. Therap Adv. Gastroenterol. 9, 339–353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Carabotti, M., Scirocco, A., Maselli, M. A. & Severi, C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28, 203–209 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Blair, P. J., Rhee, P. L., Sanders, K. M. & Ward, S. M. The significance of interstitial cells in neurogastroenterology. J. Neurogastroenterol. Motil. 20, 294–317 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Der-Silaphet, T., Malysz, J., Hagel, S., Arsenault, A. L. & Huizinga, J. D. Interstitial cells of Cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterology 114, 724–736 (1998).

    CAS  PubMed  Google Scholar 

  23. Spencer, N. J., Dinning, P. G., Brookes, S. J. & Costa, M. Insights into the mechanisms underlying colonic motor patterns. J. Physiol. 594, 4099–4116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mazet, B. Gastrointestinal motility and its enteric actors in mechanosensitivity: past and present. Pflugers Arch. 467, 191–200 (2015).

    CAS  PubMed  Google Scholar 

  25. Heuckeroth, R. in Pediatric Neurogastroenterology (eds Faure, C., Di Lorenzo, C. & Thapar, N.) 291–302 (Springer, 2016).

    Google Scholar 

  26. McKeown, S. J., Stamp, L., Hao, M. M. & Young, H. M. Hirschsprung disease: a developmental disorder of the enteric nervous system. Wiley Interdiscip. Rev. Dev. Biol. 2, 113–129 (2013).

    CAS  PubMed  Google Scholar 

  27. Amiel, J. et al. Hirschsprung disease, associated syndromes and genetics: a review. J. Med. Genet. 45, 1–14 (2008).

    CAS  PubMed  Google Scholar 

  28. Skinner, M. Hirschsprung's disease. Curr. Probl. Surg. 33, 391–461 (1996).

    Google Scholar 

  29. Haricharan, R. N. & Georgeson, K. E. Hirschsprung disease. Semin. Pediatr. Surg. 17, 266–275 (2008).

    PubMed  Google Scholar 

  30. Sherman, J. O. et al. A 40-year multinational retrospective study of 880 Swenson procedures. J. Pediatr. Surg. 24, 833–838 (1989).

    CAS  PubMed  Google Scholar 

  31. Suita, S., Taguchi, T., Ieiri, S. & Nakatsuji, T. Hirschsprung's disease in Japan: analysis of 3852 patients based on a nationwide survey in 30 years. J. Pediatr. Surg. 40, 197–201 (2005).

    PubMed  Google Scholar 

  32. Laughlin, D. M., Friedmacher, F. & Puri, P. Total colonic aganglionosis: a systematic review and meta-analysis of long-term clinical outcome. Pediatr. Surg. Int. 28, 773–779 (2012).

    PubMed  Google Scholar 

  33. Reding, R. et al. Hirschsprung's disease: a 20-year experience. J. Pediatr. Surg. 32, 1221–1225 (1997).

    CAS  PubMed  Google Scholar 

  34. Moore, S. W. & Zaahl, M. Clinical and genetic differences in total colonic aganglionosis in Hirschsprung's disease. J. Pediatr. Surg. 44, 1899–1903 (2009).

    PubMed  Google Scholar 

  35. Swenson, O., Rheinlander, H. F. & Diamond, I. Hirschsprung's disease; a new concept of the etiology; operative results in 34 patients. N. Engl. J. Med. 241, 551–556 (1949).

    CAS  PubMed  Google Scholar 

  36. Thakkar, H. S. et al. Functional outcomes in Hirschsprung disease: A single institution's 12-year experience. J. Pediatr. Surg. 52, 277–280 (2017).

    PubMed  Google Scholar 

  37. Gosain, A. & Brinkman, A. S. Hirschsprung's associated enterocolitis. Curr. Opin. Pediatr. 27, 364–369 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Martucciello, G. Hirschsprung's disease, one of the most difficult diagnoses in pediatric surgery: a review of the problems from clinical practice to the bench. Eur. J. Pediatr. Surg. 18, 140–149 (2008).

    CAS  PubMed  Google Scholar 

  39. Aboagye, J. et al. Age at presentation of common pediatric surgical conditions: reexamining dogma. J. Pediatr. Surg. 49, 995–999 (2014).

    PubMed  Google Scholar 

  40. Menezes, M., Corbally, M. & Puri, P. Long-term results of bowel function after treatment for Hirschsprung's disease: a 29-year review. Pediatr. Surg. Int. 22, 987–990 (2006).

    PubMed  Google Scholar 

  41. Doodnath, R. & Puri, P. A systematic review and meta-analysis of Hirschsprung's disease presenting after childhood. Pediatr. Surg. Int. 26, 1107–1110 (2010).

    PubMed  Google Scholar 

  42. Surana, R., Quinn, F. M. J. & Puri, P. Neonatal intestinal perforation in Hirschsprung's disease. Pediatr. Surg. Int. 9, 501–502 (1994).

    Google Scholar 

  43. Bell, M. J. Perforation of the gastrointestinal tract and peritonitis in the neonate. Surg. Gynecol. Obstet. 160, 20–26 (1985).

    CAS  PubMed  Google Scholar 

  44. Newman, B., Nussbaum, A. & Kirkpatrick, J. A. Jr. Bowel perforation in Hirschsprung's disease. AJR Am. J. Roentgenol 148, 1195–1197 (1987).

    CAS  PubMed  Google Scholar 

  45. Hackam, D. J., Reblock, K. K., Redlinger, R. E. & Barksdale, E. M. Jr. Diagnosis and outcome of Hirschsprung's disease: does age really matter? Pediatr. Surg. Int. 20, 319–322 (2004).

    CAS  PubMed  Google Scholar 

  46. Teitelbaum, D. H. et al. A decade of experience with the primary pull-through for hirschsprung disease in the newborn period: a multicenter analysis of outcomes. Ann. Surg. 232, 372–380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Diamond, I. R., Casadiego, G., Traubici, J., Langer, J. C. & Wales, P. W. The contrast enema for Hirschsprung disease: predictors of a false-positive result. J. Pediatr. Surg. 42, 792–795 (2007).

    PubMed  Google Scholar 

  48. Jung, P. M. Hirschsprung's disease: one surgeon's experience in one institution. J. Pediatr. Surg. 30, 646–651 (1995).

    CAS  PubMed  Google Scholar 

  49. Rahman, N. et al. Rectal biopsy for Hirschsprung's disease—are we performing too many? Eur. J. Pediatr. Surg. 20, 95–97 (2010).

    CAS  PubMed  Google Scholar 

  50. Downey, E. C., Hughes, E., Putnam, A. R., Baskin, H. J. & Rollins, M. D. Hirschsprung disease in the premature newborn: a population based study and 40-year single center experience. J. Pediatr. Surg. 50, 123–125 (2015).

    PubMed  Google Scholar 

  51. Mugie, S. M., Benninga, M. A. & Di Lorenzo, C. Epidemiology of constipation in children and adults: a systematic review. Best Pract. Res. Clin. Gastroenterol. 25, 3–18 (2011).

    PubMed  Google Scholar 

  52. Courdent, M., Beghin, L., Akré, J. & Turck, D. Infrequent stools in exclusively breastfed infants. Breastfeed. Med. 9, 442–445 (2014).

    PubMed  Google Scholar 

  53. Mugie, S. M., Di Lorenzo, C. & Benninga, M. A. Constipation in childhood. Nat. Rev. Gastroenterol. Hepatol. 8, 502–511 (2011).

    PubMed  Google Scholar 

  54. Frykman, P. K. & Short, S. S. Hirschsprung-associated enterocolitis: prevention and therapy. Semin. Pediatr. Surg. 21, 328–335 (2012).

    PubMed  PubMed Central  Google Scholar 

  55. Austin, K. M. The pathogenesis of Hirschsprung's disease-associated enterocolitis. Semin. Pediatr. Surg. 21, 319–327 (2012).

    PubMed  Google Scholar 

  56. Demehri, F. R. et al. Altered fecal short chain fatty acid composition in children with a history of Hirschsprung-associated enterocolitis. J. Pediatr. Surg. 51, 81–86 (2016).

    PubMed  Google Scholar 

  57. Pastor, A. C., Osman, F., Teitelbaum, D. H., Caty, M. G. & Langer, J. C. Development of a standardized definition for Hirschsprung's-associated enterocolitis: a Delphi analysis. J. Pediatr. Surg. 44, 251–256 (2009).

    PubMed  Google Scholar 

  58. de Lorijn, F., Kremer, L. C., Reitsma, J. B. & Benninga, M. A. Diagnostic tests in Hirschsprung disease: a systematic review. J. Pediatr. Gastroenterol. Nutr. 42, 496–505 (2006).

    CAS  PubMed  Google Scholar 

  59. Swenson, O. & Bill, A. H. Jr. Resection of rectum and rectosigmoid with preservation of the sphincter for benign spastic lesions producing megacolon; an experimental study. Surgery 24, 212–220 (1948).

    CAS  PubMed  Google Scholar 

  60. De La Torre, L. & Langer, J. C. Transanal endorectal pull-through for Hirschsprung disease: technique, controversies, pearls, pitfalls, and an organized approach to the management of postoperative obstructive symptoms. Semin. Pediatr. Surg. 19, 96–106 (2010).

    PubMed  Google Scholar 

  61. Dasgupta, R. & Langer, J. C. Hirschsprung disease. Curr. Probl. Surg. 41, 942–988 (2004).

    PubMed  Google Scholar 

  62. Langer, J. C. Hirschsprung disease. Curr. Opin. Pediatr. 25, 368–374 (2013).

    PubMed  Google Scholar 

  63. Swaminathan, M. & Kapur, R. P. Counting myenteric ganglion cells in histologic sections: an empirical approach. Hum. Pathol. 41, 1097–1108 (2010).

    PubMed  Google Scholar 

  64. Soave, F. Hirschsprung's disease: a new surgical technique. Arch. Dis. Child 39, 116–124 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Duhamel, B. A new operation for the treatment of Hirschsprung's disease. Arch. Dis. Child 35, 38–39 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zimmer, J., Tomuschat, C. & Puri, P. Long-term results of transanal pull-through for Hirschsprung's disease: a meta-analysis. Pediatr. Surg. Int. 32, 743–749 (2016).

    CAS  PubMed  Google Scholar 

  67. Tomuschat, C., Zimmer, J. & Puri, P. Laparoscopic-assisted pull-through operation for Hirschsprung's disease: a systematic review and meta-analysis. Pediatr. Surg. Int. 32, 751–757 (2016).

    CAS  PubMed  Google Scholar 

  68. Sieber, W. K. Hirschsprung's disease. Curr. Probl. Surg. 15, 1–76 (1978).

    CAS  PubMed  Google Scholar 

  69. Ikeda, K. & Goto, S. Diagnosis and treatment of Hirschsprung's disease in Japan. An analysis of 1628 patients. Ann. Surg. 199, 400–405 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rescorla, F. J., Morrison, A. M., Engles, D., West, K. W. & Grosfeld, J. L. Hirschsprung's disease. Evaluation of mortality and long-term function in 260 cases. Arch. Surg. 127, 934–941 (1992).

    CAS  PubMed  Google Scholar 

  71. Pini Prato, A. et al. Hirschsprung's disease: what about mortality? Pediatr. Surg. Int. 27, 473–478 (2011).

    PubMed  Google Scholar 

  72. Barnes, P. R., Lennard-Jones, J. E., Hawley, P. R. & Todd, I. P. Hirschsprung's disease and idiopathic megacolon in adults and adolescents. Gut 27, 534–541 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bandre, E. et al. Hirschsprung's disease: management problem in a developing country. Afr. J. Paediatr. Surg. 7, 166–168 (2010).

    CAS  PubMed  Google Scholar 

  74. Shinall, M. C. Jr, Koehler, E., Shyr, Y. & Lovvorn, H. N. 3rd. Comparing cost and complications of primary and staged surgical repair of neonatally diagnosed Hirschsprung's disease. J. Pediatr. Surg. 43, 2220–2225 (2008).

    PubMed  Google Scholar 

  75. Kim, A. C. et al. Endorectal pull-through for Hirschsprung's disease-a multicenter, long-term comparison of results: transanal versus transabdominal approach. J. Pediatr. Surg. 45, 1213–1220 (2010).

    PubMed  Google Scholar 

  76. Menezes, M. & Puri, P. Long-term outcome of patients with enterocolitis complicating Hirschsprung's disease. Pediatr. Surg. Int. 22, 316–318 (2006).

    PubMed  Google Scholar 

  77. Heuckeroth, R. O. & Schafer, K. H. Gene-environment interactions and the enteric nervous system: Neural plasticity and Hirschsprung disease prevention. Dev. Biol. 417, 188–197 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bondurand, N. & Southard-Smith, E. M. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: old and new players. Dev. Biol. 417, 139–157 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Avetisyan, M., Schill, E. M. & Heuckeroth, R. O. Building a second brain in the bowel. J. Clin. Invest. 125, 899–907 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Lake, J. I. & Heuckeroth, R. O. Enteric nervous system development: migration, differentiation, and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G1–G24 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Goldstein, A. M., Hofstra, R. M. & Burns, A. J. Building a brain in the gut: development of the enteric nervous system. Clin. Genet. 83, 307–316 (2013).

    CAS  PubMed  Google Scholar 

  82. Obermayr, F., Hotta, R., Enomoto, H. & Young, H. M. Development and developmental disorders of the enteric nervous system. Nat. Rev. Gastroenterol. Hepatol. 10, 43–57 (2012).

    PubMed  Google Scholar 

  83. Lake, J. I., Tusheva, O. A., Graham, B. L. & Heuckeroth, R. O. Hirschsprung-like disease is exacerbated by reduced de novo GMP synthesis. J. Clin. Invest. 123, 4875–4887 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Newgreen, D. F., Dufour, S., Howard, M. J. & Landman, K. A. Simple rules for a “simple” nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. Dev. Biol. 382, 305–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gui, H. et al. Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biol. 18, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Kapoor, A. et al. Population variation in total genetic risk of hirschsprung disease from common RET, SEMA3 AND NRG1 susceptibility polymorphisms. Hum. Mol. Genet. 24, 2997–3003 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Luzon-Toro, B. et al. Exome sequencing reveals a high genetic heterogeneity on familial Hirschsprung disease. Sci. Rep. 5, 16473 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bergeron, K. F., Silversides, D. W. & Pilon, N. The developmental genetics of Hirschsprung's disease. Clin. Genet. 83, 15–22 (2013).

    CAS  PubMed  Google Scholar 

  89. Emison, E. S. et al. Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am. J. Hum. Genet. 87, 60–74 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gabriel, S. B. et al. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nat. Genet. 31, 89–93 (2002).

    CAS  PubMed  Google Scholar 

  91. Alves, M. M. et al. Contribution of rare and common variants determine complex diseases-Hirschsprung disease as a model. Dev. Biol. 382, 320–329 (2013).

    CAS  PubMed  Google Scholar 

  92. Pilon, N. Pigmentation-based insertional mutagenesis is a simple and potent screening approach for identifying neurocristopathy-associated genes in mice. Rare Dis. 4, e1156287 (2016).

    PubMed  PubMed Central  Google Scholar 

  93. Tang, W. et al. Exome-wide association study identified new risk loci for Hirschsprung's disease. Mol. Neurobiol. 54, 1777–1785 (2016).

    PubMed  Google Scholar 

  94. Yang, J. et al. Exome sequencing identified NRG3 as a novel susceptible gene of Hirschsprung's disease in a Chinese population. Mol. Neurobiol. 47, 957–966 (2013).

    CAS  PubMed  Google Scholar 

  95. Verma, A., Rattan, K. N. & Yadav, R. Neonatal intestinal obstruction: a 15 year experience in a tertiary care hospital. J. Clin. Diagn. Res. 10, SC10–SC13 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Badner, J. A., Sieber, W. K., Garver, K. L. & Chakravarti, A. A genetic study of Hirschsprung disease. Am. J. Hum. Genet. 46, 568–580 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Goldberg, E. L. An epidemiological study of Hirschsprung's disease. Int. J. Epidemiol. 13, 479–485 (1984).

    CAS  PubMed  Google Scholar 

  98. Bodian, M. & Carter, O. O. A family study of Hirschsprung's disease. Ann. Hum. Genet. 26, 261–277 (1963).

    Google Scholar 

  99. Burzynski, G. M. et al. Identifying candidate Hirschsprung disease-associated RET variants. Am. J. Hum. Genet. 76, 850–858 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Emison, E. S. et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434, 857–863 (2005).

    CAS  PubMed  Google Scholar 

  101. Soret, R. et al. A collagen VI-dependent pathogenic mechanism for Hirschsprung's disease. J. Clin. Invest. 125, 4483–4496 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Attie, T. et al. Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum. Mol. Genet. 4, 1381–1386 (1995).

    CAS  PubMed  Google Scholar 

  103. Simkin, J. E., Zhang, D., Rollo, B. N. & Newgreen, D. F. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut. PLoS ONE 8, e64077 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. Lang, D. et al. Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-Ret. J. Clin. Invest. 106, 963–971 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.-F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366–370 (1999).

    CAS  PubMed  Google Scholar 

  106. Southard-Smith, E. M., Kos, L. & Pavan, W. J. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet. 18, 60–64 (1998).

    CAS  PubMed  Google Scholar 

  107. Garcia-Barcelo, M. et al. Association study of PHOX2B as a candidate gene for Hirschsprung's disease. Gut 52, 563–567 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Li, Y. et al. SRY interference of normal regulation of the RET gene suggests a potential role of the Y-chromosome gene in sexual dimorphism in Hirschsprung disease. Hum. Mol. Genet. 24, 685–697 (2015).

    CAS  PubMed  Google Scholar 

  109. Vohra, B. P. et al. Reduced endothelin converting enzyme-1 and endothelin-3 mRNA in the developing bowel of male mice may increase expressivity and penetrance of Hirschsprung disease-like distal intestinal aganglionosis. Dev. Dyn. 236, 106–117 (2007).

    CAS  PubMed  Google Scholar 

  110. Fu, M. et al. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development 137, 631–640 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Saavedra, A., Baltazar, G. & Duarte, E. P. Driving GDNF expression: the green and the red traffic lights. Prog. Neurobiol. 86, 186–215 (2008).

    CAS  PubMed  Google Scholar 

  112. Korbel, J. O. et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc. Natl Acad. Sci. USA 106, 12031–12036 (2009).

    CAS  PubMed  Google Scholar 

  113. McCallion, A. S., Stames, E., Conlon, R. A. & Chakravarti, A. Phenotype variation in two-locus mouse models of Hirschsprung disease: tissue-specific interaction between Ret and Ednrb. Proc. Natl Acad. Sci. USA 100, 1826–1831 (2003).

    CAS  PubMed  Google Scholar 

  114. Cantrell, V. A. et al. Interactions between Sox10 and EdnrB modulate penetrance and severity of aganglionosis in the Sox10Dom mouse model of Hirschsprung disease. Hum. Mol. Genet. 13, 2289–2301 (2004).

    CAS  PubMed  Google Scholar 

  115. Stanchina, L. et al. Interactions between Sox10, Edn3 and Ednrb during enteric nervous system and melanocyte development. Dev. Biol. 295, 232–249 (2006).

    CAS  PubMed  Google Scholar 

  116. Schill, E. M. et al. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev. Biol. 409, 473–488 (2016).

    CAS  PubMed  Google Scholar 

  117. Arnold, S. et al. Interaction between a chromosome 10 RET enhancer and chromosome 21 in the Down syndrome-Hirschsprung disease association. Hum. Mutat. 30, 771–775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Jiang, Q. et al. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am. J. Hum. Genet. 96, 581–596 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Carrasquillo, M. M. et al. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat. Genet. 32, 237–244 (2002).

    CAS  PubMed  Google Scholar 

  120. Tam, P. K. Hirschsprung's disease: a bridge for science and surgery. J. Pediatr. Surg. 51, 18–22 (2016).

    PubMed  Google Scholar 

  121. Duess, J. W. & Puri, P. Syndromic Hirschsprung's disease and associated congenital heart disease: a systematic review. Pediatr. Surg. Int. 31, 781–785 (2015).

    PubMed  Google Scholar 

  122. Sarioglu, A., Tanyel, F. C., Buyukpamukcu, N. & Hicsonmez, A. Hirschsprung-associated congenital anomalies. Eur. J. Pediatr. Surg. 7, 331–337 (1997).

    CAS  PubMed  Google Scholar 

  123. Hofmann, A. D., Duess, J. W. & Puri, P. Congenital anomalies of the kidney and urinary tract (CAKUT) associated with Hirschsprung's disease: a systematic review. Pediatr. Surg. Int. 30, 757–761 (2014).

    PubMed  Google Scholar 

  124. Skinner, M. A., Safford, S. D., Reeves, J. G., Jackson, M. E. & Freemerman, A. J. Renal aplasia in humans is associated with RET mutations. Am. J. Hum. Genet. 82, 344–351 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sampson, M. G. et al. Evidence for a recurrent microdeletion at chromosome 16p11.2 associated with congenital anomalies of the kidney and urinary tract (CAKUT) and Hirschsprung disease. Am. J. Med. Genet. A 152A, 2618–2622 (2010).

    CAS  PubMed  Google Scholar 

  126. Pingault, V. et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat. Genet. 18, 171–173 (1998).

    CAS  PubMed  Google Scholar 

  127. Bondurand, N. et al. A molecular analysis of the yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. Hum. Mol. Genet. 8, 1785–1789 (1999).

    CAS  PubMed  Google Scholar 

  128. Parthey, K. et al. SOX10 mutation with peripheral amyelination and developmental disturbance of axons. Muscle Nerve 45, 284–290 (2012).

    CAS  PubMed  Google Scholar 

  129. Matera, I. et al. PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset Central Hypoventilation syndrome. J. Med. Genet. 41, 373–380 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Makitie, O. & Kostjukovits, S. in GeneReviews® (eds Pagon, R. A. et al.) (University of Washington, Seattle, 1993).

    Google Scholar 

  131. Takahashi, M. et al. Co-segregation of MEN2 and Hirschsprung's disease: the same mutation of RET with both gain and loss-of-function? Hum. Mutat. 13, 331–336 (1999).

    CAS  PubMed  Google Scholar 

  132. Moore, S. W. & Zaahl, M. G. Chasing the ubiquitous RET proto-oncogene in South African MEN2 families — implications for the surgeon. S. Afr. J. Surg. 48, 127–131 (2010).

    CAS  PubMed  Google Scholar 

  133. Cohen, M. S. et al. Gastrointestinal manifestations of multiple endocrine neoplasia type 2. Ann. Surg. 235, 648–654 (2002).

    PubMed  PubMed Central  Google Scholar 

  134. Grey, W. et al. The RET E616Q variant is a gain of function mutation present in a family with features of multiple endocrine neoplasia 2A. Endocr. Pathol. 28, 41–48 (2017).

    CAS  PubMed  Google Scholar 

  135. Arighi, E. et al. Biological effects of the dual phenotypic Janus mutation of ret cosegregating with both multiple endocrine neoplasia type 2 and Hirschsprung's disease. Mol. Endocrinol. 18, 1004–1017 (2004).

    CAS  PubMed  Google Scholar 

  136. Luzon-Toro, B. et al. Next-generation-based targeted sequencing as an efficient tool for the study of the genetic background in Hirschsprung patients. BMC Med. Genet. 16, 89 (2015).

    PubMed  PubMed Central  Google Scholar 

  137. So, M. T. et al. RET mutational spectrum in Hirschsprung disease: evaluation of 601 Chinese patients. PLoS ONE 6, e28986 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Seri, M. et al. Frequency of RET mutations in long- and short-segment Hirschsprung disease. Hum. Mutat. 9, 243–249 (1997).

    CAS  PubMed  Google Scholar 

  139. Owens, S. E. et al. Genome-wide linkage identifies novel modifier loci of aganglionosis in the Sox10Dom model of Hirschsprung disease. Hum. Mol. Genet. 14, 1549–1558 (2005).

    CAS  PubMed  Google Scholar 

  140. Huang, J. et al. Genetic variation in the GDNF promoter affects its expression and modifies the severity of Hirschsprung's disease (HSCR) in rats carrying Ednrbsl mutations. Gene 575, 144–148 (2016).

    CAS  PubMed  Google Scholar 

  141. Fattahi, F. et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531, 105–109 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Williams, J. et al. Updated estimates of neural tube defects prevented by mandatory folic acid fortification — United States, 1995–2011. MMWR Morb. Mortal. Wkly Rep. 64, 1–5 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. Force, U. S. P. S. T. et al. Folic acid supplementation for the prevention of neural tube defects: US preventive services task force recommendation statement. JAMA 317, 183–189 (2017).

    Google Scholar 

  144. Rhoads, G. G. & Mills, J. L. Can vitamin supplements prevent neural tube defects? Current evidence and ongoing investigations. Clin. Obstet. Gynecol. 29, 569–579 (1986).

    CAS  PubMed  Google Scholar 

  145. West, K. P. Jr. Extent of vitamin A deficiency among preschool children and women of reproductive age. J. Nutr. 132, 2857S–2866S (2002).

    CAS  PubMed  Google Scholar 

  146. Mills, J. L., Simpson, J. L., Cunningham, G. C., Conley, M. R. & Rhoads, G. G. Vitamin A and birth defects. Am. J. Obstet. Gynecol. 177, 31–36 (1997).

    CAS  PubMed  Google Scholar 

  147. Anderka, M. T., Lin, A. E., Abuelo, D. N., Mitchell, A. A. & Rasmussen, S. A. Reviewing the evidence for mycophenolate mofetil as a new teratogen: case report and review of the literature. Am. J. Med. Genet. A149A, 1241–1248 (2009).

  148. Landman, K. A., Simpson, M. J. & Newgreen, D. F. Mathematical and experimental insights into the development of the enteric nervous system and Hirschsprung's disease. Dev. Growth Differ. 49, 277–286 (2007).

    PubMed  Google Scholar 

  149. Sharma, D., Shastri, S. & Sharma, P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin. Med. Insights Pediatr. 10, 67–83 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. American Congress of Obstetricians and Gynecologists. Reducing risks of birth defects. ACOG https://www.acog.org/Patients/FAQs/Reducing-Risks-of-Birth-Defects#pregnancy (2017).

  151. Musser, M. A., Correa, H. & Southard-Smith, E. M. Enteric neuron imbalance and proximal dysmotility in ganglionated intestine of the Sox10Dom/+ Hirschsprung mouse model. Cell. Mol. Gastroenterol. Hepatol. 1, 87–101 (2015).

    PubMed  Google Scholar 

  152. Jain, S. et al. Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development 131, 5503–5513 (2004).

    CAS  PubMed  Google Scholar 

  153. Gosain, A. Established and emerging concepts in Hirschsprung's-associated enterocolitis. Pediatr. Surg. Int. 32, 313–320 (2016).

    PubMed  PubMed Central  Google Scholar 

  154. Diebel, L. N., Dulchavsky, S. A. & Wilson, R. F. Effect of increased intra-abdominal pressure on mesenteric arterial and intestinal mucosal blood flow. J. Trauma 33, 45–49 (1992).

    CAS  PubMed  Google Scholar 

  155. Pratap, A. et al. Doppler study of splanchnic hemodynamics in Hirschsprung's disease. Eur. Surg. Res. 39, 148–152 (2007).

    PubMed  Google Scholar 

  156. Soeda, J., O'Briain, D. S. & Puri, P. Regional reduction in intestinal neuroendocrine cell populations in enterocolitis complicating Hirschsprung's disease. J. Pediatr. Surg. 28, 1063–1068 (1993).

    CAS  PubMed  Google Scholar 

  157. Thiagarajah, J. R. et al. Altered goblet cell differentiation and surface mucus properties in Hirschsprung disease. PLoS ONE 9, e99944 (2014).

    PubMed  PubMed Central  Google Scholar 

  158. Sharkey, K. A. & Savidge, T. C. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton. Neurosci. 181, 94–106 (2014).

    CAS  PubMed  Google Scholar 

  159. Hitch, M. C. et al. Ret heterozygous mice have enhanced intestinal adaptation after massive small bowel resection. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1143–G1150 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ibiza, S. et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535, 440–443 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Gross, E. R. et al. Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology 143, 408–417.e2 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Avetisyan, M. et al. Hepatocyte growth factor and MET Support mouse enteric nervous system development, the peristaltic response, and intestinal epithelial proliferation in response to injury. J. Neurosci. 35, 11543–11558 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Bjerknes, M. & Cheng, H. Modulation of specific intestinal epithelial progenitors by enteric neurons. Proc. Natl Acad. Sci. USA 98, 12497–12502 (2001).

    CAS  PubMed  Google Scholar 

  164. Bush, T. G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93, 189–201 (1998).

    CAS  PubMed  Google Scholar 

  165. Meir, M. et al. The glial cell-line derived neurotrophic factor: a novel regulator of intestinal barrier function in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G1118–G1123 (2016).

    PubMed  Google Scholar 

  166. Brun, P. et al. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145, 1323–1333 (2013).

    CAS  PubMed  Google Scholar 

  167. Gershon, M. D. Serotonin is a sword and a shield of the bowel: serotonin plays offense and defense. Trans. Am. Clin. Climatol. Associ. 123, 268–280 (2012).

    Google Scholar 

  168. Rao, M. et al. Enteric glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. Gastroenterology 153, 1068–1081.e7 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. Frykman, P. K. et al. Characterization of bacterial and fungal microbiome in children with Hirschsprung disease with and without a history of enterocolitis: a multicenter study. PLoS ONE 10, e0124172 (2015).

    PubMed  PubMed Central  Google Scholar 

  170. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Hyland, N. P. & Cryan, J. F. Microbe-host interactions: influence of the gut microbiota on the enteric nervous system. Dev. Biol. 417, 182–187 (2016).

    CAS  PubMed  Google Scholar 

  172. McVey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A. & Kunze, W. A. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol. Motil. 25, 183–e88 (2013).

    CAS  PubMed  Google Scholar 

  173. Obata, Y. & Pachnis, V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology 151, 836–844 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang, X., Li, Z., Xu, Z., Wang, Z. & Feng, J. Probiotics prevent Hirschsprung's disease-associated enterocolitis: a prospective multicenter randomized controlled trial. Int. J. Colorectal Dis. 30, 105–110 (2015).

    PubMed  Google Scholar 

  175. El-Sawaf, M., Siddiqui, S., Mahmoud, M., Drongowski, R. & Teitelbaum, D. H. Probiotic prophylaxis after pullthrough for Hirschsprung disease to reduce incidence of enterocolitis: A prospective, randomized, double-blind, placebo-controlled, multicenter trial. J. Pediatr. Surg. 48, 111–117 (2013).

    PubMed  Google Scholar 

  176. Margolis, K. G., Gershon, M. D. & Bogunovic, M. Cellular organization of neuroimmune interactions in the gastrointestinal tract. Trends Immunol. 37, 487–501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Patel, A. et al. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems. Sci. Signal. 5, ra55 (2012).

    PubMed  Google Scholar 

  178. Frykman, P. K., Cheng, Z., Wang, X. & Dhall, D. Enterocolitis causes profound lymphoid depletion in endothelin receptor B- and endothelin 3-null mouse models of Hirschsprung-associated enterocolitis. Eur. J. Immunol. 45, 807–817 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Di Giovangiulio, M. et al. The neuromodulation of the intestinal immune system and its relevance in inflammatory bowel disease. Front. Immunol. 6, 590 (2015).

    PubMed  PubMed Central  Google Scholar 

  180. Sofroniew, M. V. et al. Genetically-targeted and conditionally-regulated ablation of astroglial cells in the central, enteric and peripheral nervous systems in adult transgenic mice. Brain Res. 835, 91–95 (1999).

    CAS  PubMed  Google Scholar 

  181. Burns, A. J. et al. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev. Biol. 417, 229–251 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Burns, A. J. & Thapar, N. Neural stem cell therapies for enteric nervous system disorders. Nat. Rev. Gastroenterol. Hepatol. 11, 317–328 (2014).

    PubMed  Google Scholar 

  183. Workman, M. J. et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 23, 49–59 (2016).

    PubMed  PubMed Central  Google Scholar 

  184. Goto, K. et al. Activation of 5-HT4 receptors facilitates neurogenesis from transplanted neural stem cells in the anastomotic ileum. J. Physiol. Sci. 66, 67–76 (2016).

    CAS  PubMed  Google Scholar 

  185. Gershon, M. D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 20, 14–21 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Wood, J. D. Enteric nervous system neuropathy: repair and restoration. Curr. Opin. Gastroenterol. 27, 106–111 (2011).

    PubMed  Google Scholar 

  187. Takenouchi, T. et al. Hirschsprung disease as a yet undescribed phenotype in a patient with ARID1B mutation. Am. J. Med. Genet. A 170A, 3249–3252 (2016).

    Google Scholar 

  188. Zhu, J. J., Kam, M. K., Garcia-Barceló, M. M., Tam, P. K. & Lui, V. C. HOXB5 binds to multi-species conserved sequence (MCS+9.7) of RET gene and regulates RET expression. Int. J. Biochem. Cell Biol. 51, 142–149 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.O.H. is supported by the Burroughs Wellcome Fund Clinical Scientist Award in Translational Research (1008525), the Children's Discovery Institute at Washington University School of Medicine (MD-11-2013-269), FDA (R01FD005133), Penn Medicine Neuroscience Center, March of Dimes 6-FY15-235, PennCHOP Microbiome Program (FP00021900), NIH Common Fund (1OT2OD023859-01), Canadian Institutes of Health Research (201610PJT), and by generous support from the Irma and Norman Braman Endowment, The Suzi and Scott Lustgarten Center Endowment and The Children's Hospital of Philadelphia Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. Heuckeroth.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heuckeroth, R. Hirschsprung disease — integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol 15, 152–167 (2018). https://doi.org/10.1038/nrgastro.2017.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing